Hadoop Map/Reduce 新API中自己的FileInputFormat写法

本文详细介绍了如何通过使用最新API更新MapReduce程序,以实现将数据集中的CITING和CITED字段进行反转操作。通过自定义Map和Reduce类,展示了如何处理和输出修改后的数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在看《Hadoop in Action》时发现代码使用的是旧的API,且部分API已经标记为Deprecated。

所以自己尝试着写了一个使用新API的例子来完成该代码的功能。

数据格式如下:

"CITING","CITED"
3858241,956203
3858241,1324234
3858241,3398406
3858241,3557384

...

程序的目的是将所有数据的CITING和CITED值反过来输出。


MapReduce程序:

package com;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.LineRecordReader;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class MyJob extends Configured implements Tool {
	
	public static class MapClass extends Mapper<Text,Text,Text,Text> {
		
		public void map(Text key,Text value,Context context) 
				throws IOException, InterruptedException {
			context.write(value, key);
		}
	}
	
	public static class Reduce extends Reducer<Text,Text,Text,Text> {
		
		public void reduce(Text key, Iterable<Text> values, Context context)
			throws IOException, InterruptedException {
			
			String csv = "";
			for(Text value : values) {
				if( csv.length() > 0 ) csv += ",";
				csv += value.toString();
			}
			context.write(key, new Text(csv));
		}
	}
	
	public static void main(String[] args) throws Exception {
		int res = ToolRunner.run(new Configuration(), new MyJob(), args);    //调用新的类的方法免除配置的相关琐碎的细节
		System.exit(res);
	}

	@Override
	public int run(String[] arg0) throws Exception {
		Job job = new Job();
		job.setJarByClass(MyJob.class);
		
		FileInputFormat.addInputPath(job, new Path(arg0[0]));
		FileOutputFormat.setOutputPath(job, new Path(arg0[1]));
		
		job.setMapperClass(MapClass.class);
		job.setReducerClass(Reduce.class);
		job.setInputFormatClass(MyInputFormat.class);
		job.setOutputFormatClass(TextOutputFormat.class);
		
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);
		
		System.exit(job.waitForCompletion(true) ? 0 : 1);
		return 0;
	}
}



MyInputFormat类:

import java.io.IOException;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import com.MyRecordReader;

public class MyInputFormat extends FileInputFormat<Text,Text> {
	@Override
	  protected boolean isSplitable(JobContext context, Path file) {
	    CompressionCodec codec = 
	      new CompressionCodecFactory(context.getConfiguration()).getCodec(file);
	    return codec == null;
	  }
	@Override
	public RecordReader<Text, Text> createRecordReader(InputSplit split,
			TaskAttemptContext context) throws IOException,
			InterruptedException {
		
		return new MyRecordReader(context.getConfiguration());
	}
	
}

MyRecordReaader类:(参照KeyValueTextInputFormat(hadoop-0.23.0)写成)

package com;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.LineRecordReader;

public class MyRecordReader extends RecordReader<Text,Text> {
	private final LineRecordReader lineRecordReader;
	private byte separator = (byte) ',';
	
	private Text innerValue;
	private Text key;
	private Text value;
	
	public MyRecordReader(Configuration conf) {
		lineRecordReader = new LineRecordReader();
	}
	
	@Override
	public void close() throws IOException {
		// TODO Auto-generated method stub
		lineRecordReader.close();
	}

	@Override
	public Text getCurrentKey() throws IOException, InterruptedException {
		// TODO Auto-generated method stub
		return key;
	}

	@Override
	public Text getCurrentValue() throws IOException, InterruptedException {
		// TODO Auto-generated method stub
		return value;
	}

	@Override
	public float getProgress() throws IOException, InterruptedException {
		// TODO Auto-generated method stub
		return lineRecordReader.getProgress();
	}

	@Override
	public void initialize(InputSplit genericSplit, TaskAttemptContext context)
			throws IOException, InterruptedException {
		// TODO Auto-generated method stub
		lineRecordReader.initialize(genericSplit, context);
	}

	@Override
	public boolean nextKeyValue() throws IOException, InterruptedException {
		// TODO Auto-generated method stub
		byte[] line = null;
		int lineLen = -1;
		
		if( lineRecordReader.nextKeyValue() ) {
			innerValue = lineRecordReader.getCurrentValue();
			line = innerValue.getBytes();
			lineLen = innerValue.getLength();
		} else {
			return false;
		}
		
		if( line == null ) 
			return false;
		if( key == null )
			key = new Text();
		if( value == null )
			value = new Text();
		
		int pos = findSeparator(line, 0, lineLen, this.separator);
		setKeyValue(key,value,line,lineLen,pos);
		return true;
	}
	
	public int findSeparator(byte[] utf, int start, int length, byte sep) {
		for( int i = start; i < (start + length); ++ i ) {
			if( utf[i] == sep ) {
				return i;
			}
		}
		return -1;
	}
	
	public void setKeyValue(Text key, Text value, byte[] line,
							int lineLen, int pos) {
		if( pos == -1 ) {
			key.set(line, 0, lineLen);
			value.set("");
		} else {
			key.set(line, 0, pos);
			value.set(line,pos+1,lineLen-pos-1);
		}
	}
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值