Top 10 Algorithms for Coding Interview

本文介绍了编程面试中常见的十大算法概念,包括字符串操作、链表、树、图、排序算法等,并通过简单示例说明了这些概念的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The following are top 10 algorithms related concepts in coding interview. I will try to illustrate those concepts though some simple examples. As understanding those concepts requires much more efforts, this list only serves as an introduction. They are viewed from a Java perspective. The following concepts will be covered:

  1. String
  2. Linked List
  3. Tree
  4. Graph
  5. Sorting
  6. Recursion vs. Iteration
  7. Dynamic Programming
  8. Bit Manipulation
  9. Probability
  10. Combinations and Permutations

1. String

Without code auto-completion of any IDE, the following methods should be remembered.

toCharyArray() //get char array of a String
Arrays.sort()  //sort an array
Arrays.toString(char[] a) //convert to string
charAt(int x) //get a char at the specific index
length() //string length
length //array size

Also in Java a String is not a char array. A String contains a char array and other fields and methods.

2. Linked List

The implementation of a linked list is pretty simple in Java. Each node has a value and a link to next node.

class Node {
	int val;
	Node next;
 
	Node(int x) {
		val = x;
		next = null;
	}
}

Two popular applications of linked list are stack and queue.

Stack

class Stack{
	Node top; 
 
	public Node peek(){
		if(top != null){
			return top;
		}
 
		return null;
	}
 
	public Node pop(){
		if(top == null){
			return null;
		}else{
			Node temp = new Node(top.val);
			top = top.next;
			return temp;	
		}
	}
 
	public void push(Node n){
		if(n != null){
			n.next = top;
			top = n;
		}
	}
}

Queue

class Queue{
	Node first, last;
 
	public void enqueue(Node n){
		if(first == null){
			first = n;
			last = first;
		}else{
			last.next = n;
			last = n;
		}
	}
 
	public Node dequeue(){
		if(first == null){
			return null;
		}else{
			Node temp = new Node(first.val);
			first = first.next;
			return temp;
		}	
	}
}

3. Tree

Tree here is normally binary tree. Each node contains a left node and right node like the following:

class TreeNode{
	int value;
	TreeNode left;
	TreeNode right;
}

Here are some concepts related with trees:

  1. Binary Search Tree: for all nodes, left children <= current node <= right children
  2. Balanced vs. Unbalanced: In a balanced tree, the depth of the left and right subtrees of every node differ by 1 or less.
  3. Full Binary Tree: every node other than the leaves has two children.
  4. Perfect Binary Tree: a full binary tree in which all leaves are at the same depth or same level, and in which every parent has two children.
  5. Complete Binary Tree: a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible

4. Graph

Graph related questions mainly focus on depth first search and breath first search.

Below is a simple implementation of a graph and breath first search.

breath-first-search

1) Define a GraphNode

class GraphNode{ 
	int val;
	GraphNode next;
	GraphNode[] neighbors;
	boolean visited;
 
	GraphNode(int x) {
		val = x;
	}
 
	GraphNode(int x, GraphNode[] n){
		val = x;
		neighbors = n;
	}
 
	public String toString(){
		return "value: "+ this.val; 
	}
}

2) Define a Queue

class Queue{
	GraphNode first, last;
 
	public void enqueue(GraphNode n){
		if(first == null){
			first = n;
			last = first;
		}else{
			last.next = n;
			last = n;
		}
	}
 
	public GraphNode dequeue(){
		if(first == null){
			return null;
		}else{
			GraphNode temp = new GraphNode(first.val, first.neighbors);
			first = first.next;
			return temp;
		}	
	}
}

3) Breath First Search uses a Queue

public class GraphTest {
 
	public static void main(String[] args) {
		GraphNode n1 = new GraphNode(1); 
		GraphNode n2 = new GraphNode(2); 
		GraphNode n3 = new GraphNode(3); 
		GraphNode n4 = new GraphNode(4); 
		GraphNode n5 = new GraphNode(5); 
 
		n1.neighbors = new GraphNode[]{n2,n3,n5};
		n2.neighbors = new GraphNode[]{n1,n4};
		n3.neighbors = new GraphNode[]{n1,n4,n5};
		n4.neighbors = new GraphNode[]{n2,n3,n5};
		n5.neighbors = new GraphNode[]{n1,n3,n4};
 
		breathFirstSearch(n1, 5);
	}
 
	public static void breathFirstSearch(GraphNode root, int x){
		if(root.val == x)
			System.out.println("find in root");
 
		Queue queue = new Queue();
		root.visited = true;
		queue.enqueue(root);
 
		while(queue.first != null){
			GraphNode c = (GraphNode) queue.dequeue();
			for(GraphNode n: c.neighbors){
 
				if(!n.visited){
					System.out.print(n + " ");
					n.visited = true;
					if(n.val == x)
						System.out.println("Find "+n);
					queue.enqueue(n);
				}
			}
		}
	}
}

Output:

value: 2 value: 3 value: 5 Find value: 5
value: 4

5. Sorting

Time complexity of different sorting algorithms. You can go to wiki to see basic idea of them.

AlgorithmAverage TimeWorst TimeSpace
Bubble sortn^2n^21
Selection sortn^2n^21
Counting Sortn+kn+kn+k
Insertion sortn^2n^2 
Quick sortn log(n)n^2 
Merge sortn log(n)n log(n)depends

In addition, here are some implementations/demos: Counting sortMergesortQuicksortInsertionSort.

6. Recursion vs. Iteration

Recursion should be a built-in thought for programmers. It can be demonstrated by a simple example.

Question: there are n stairs, each time one can climb 1 or 2. How many different ways to climb the stairs.

Step 1: Finding the relationship before n and n-1.

To get n, there are only two ways, one 1-stair from n-1 or 2-stairs from n-2. If f(n) is the number of ways to climb to n, then f(n) = f(n-1) + f(n-2)

Step 2: Make sure the start condition is correct.

f(0) = 0;
f(1) = 1;

public static int f(int n){
	if(n <= 2) return n;
	int x = f(n-1) + f(n-2);
	return x;
}

The time complexity of the recursive method is exponential to n. There are a lot of redundant computations.

f(5)
f(4) + f(3)
f(3) + f(2) + f(2) + f(1)
f(2) + f(1) + f(2) + f(2) + f(1)

It should be straightforward to convert the recursion to iteration.

public static int f(int n) {
 
	if (n <= 2){
		return n;
	}
 
	int first = 1, second = 2;
	int third = 0;
 
	for (int i = 3; i <= n; i++) {
		third = first + second;
		first = second;
		second = third;
	}
 
	return third;
}

For this example, iteration takes less time. You may also want to check out Recursion vs Iteration.

7. Dynamic Programming

Dynamic programming is a technique for solving problems with the following properties:

  1. An instance is solved using the solutions for smaller instances.
  2. The solution for a smaller instance might be needed multiple times.
  3. The solutions to smaller instances are stored in a table, so that each smaller instance is solved only once.
  4. Additional space is used to save time.


The problem of climbing steps perfectly fit those 4 properties. Therefore, it can be solve by using dynamic programming.

public static int[] A = new int[100];
 
public static int f3(int n) {
	if (n <= 2)
		A[n]= n;
 
	if(A[n] > 0)
		return A[n];
	else
		A[n] = f3(n-1) + f3(n-2);//store results so only calculate once!
	return A[n];
}

8. Bit Manipulation

Bit operators:

OR (|)AND (&)XOR (^)Left Shift (<<)Right Shift (>>)Not (~)
1|0=11&0=01^0=10010<<2=10001100>>2=0011~1=0

Get bit i for a give number n. (i count from 0 and starts from right)

public static boolean getBit(int num, int i){
	int result = num & (1<<i);
 
	if(result == 0){
		return false;
	}else{
		return true;
	}
}

For example, get second bit of number 10.

i=1, n=10
1<<1= 10
1010&10=10
10 is not 0, so return true;

9. Probability

Solving probability related questions normally requires formatting the problem well. Here is just a simple example of such kind of problems.

There are 50 people in a room, what’s the probability that two people have the same birthday? (Ignoring the fact of leap year, i.e., 365 day every year)

Very often calculating probability of something can be converted to calculate the opposite. In this example, we can calculate the probability that all people have unique birthdays. That is: 365/365 * 364/365 * 363/365 * … * 365-n/365 * … * 365-49/365. And the probability that at least two people have the same birthday would be 1 – this value.

public static double caculateProbability(int n){
	double x = 1; 
 
	for(int i=0; i<n; i++){
		x *=  (365.0-i)/365.0;
	}
 
	double pro = Math.round((1-x) * 100);
	return pro/100;
}

calculateProbability(50) = 0.97

10. Combinations and Permutations

The difference between combination and permutation is whether order matters.

Please leave your comment if you think any other problem should be here.

References/Recommmended Materials:
1. Binary tree
2. Introduction to Dynamic Programming
3. UTSA Dynamic Programming slides
4. Birthday paradox
5. Cracking the Coding Interview: 150 Programming InterviewQuestions and Solutions, Gayle Laakmann McDowell

内容概要:本文深入探讨了金属氢化物(MH)储氢系统在燃料电池汽车中的应用,通过建立吸收/释放氢气的动态模型和热交换模型,结合实验测试分析了不同反应条件下的性能表现。研究表明,低温环境有利于氢气吸收,高温则促进氢气释放;提高氢气流速和降低储氢材料体积分数能提升系统效率。论文还详细介绍了换热系统结构、动态性能数学模型、吸放氢特性仿真分析、热交换系统优化设计、系统控制策略优化以及工程验证与误差分析。此外,通过三维动态建模、换热结构对比分析、系统级性能优化等手段,进一步验证了金属氢化物储氢系统的关键性能特征,并提出了具体的优化设计方案。 适用人群:从事氢能技术研发的科研人员、工程师及相关领域的研究生。 使用场景及目标:①为储氢罐热管理设计提供理论依据;②推动车载储氢技术的发展;③为金属氢化物储氢系统的工程应用提供量化依据;④优化储氢系统的操作参数和结构设计。 其他说明:该研究不仅通过建模仿真全面验证了论文实验结论,还提出了具体的操作参数优化建议,如吸氢阶段维持25-30°C,氢气流速0.012g/s;放氢阶段快速升温至70-75°C,水速18-20g/min。同时,文章还强调了安全考虑,如最高工作压力限制在5bar以下,温度传感器冗余设计等。未来的研究方向包括多尺度建模、新型换热结构和智能控制等方面。
强化学习是一种通过与环境互动来学习最佳行为策略的机器学习方法。为了开始学习这一领域,首先需要了解一些强化学习的基本算法。《Reinforcement Learning: An Introduction》(Sutton and Barto, 1998)是一本经典的强化学习教材,可以帮助初学者了解强化学习的基本概念和算法。该书介绍了强化学习的基本原理、价值函数、贝尔曼方程等重要概念,并介绍了一些经典的强化学习算法,如蒙特卡洛方法、时序差分学习、Q-learning等。这些算法是理解强化学习的基石,对初学者来说非常有帮助。 另外一本不错的入门教材是《Algorithms for Reinforcement Learning》(Szepesvári, 2009),这本书更加强调强化学习的算法和数学基础。它详细介绍了动态规划、值迭代、策略迭代、TD学习等强化学习算法,并提供了一些例子和应用场景,有助于初学者更深入地理解强化学习算法的原理和实际应用。 除了书籍,MOOC平台上也有一些优秀的强化学习入门课程,如Coursera上的《Reinforcement Learning Specialization》和Udemy上的《Practical Reinforcement Learning》。这些课程结合了理论和实践,通过视频、案例分析等方式向学习者介绍强化学习的基本原理和算法,并帮助学习者掌握强化学习的实际应用技能。 总之,要想学习强化学习,首先需要了解一些基本的强化学习算法,上述提到的书籍和课程都是不错的入门资料,可以帮助初学者快速入门强化学习领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值