原题网址:http://www.lintcode.com/en/problem/find-peak-element-ii/
There is an integer matrix which has the following features:
- The numbers in adjacent positions are different.
- The matrix has n rows and m columns.
- For all i < m, A[0][i] < A[1][i] && A[n - 2][i] > A[n - 1][i].
- For all j < n, A[j][0] < A[j][1] && A[j][m - 2] > A[j][m - 1].
We define a position P is a peek if:
A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1]
Find a peak element in this matrix. Return the index of the peak.
Notice
The matrix may contains multiple peeks, find any of them.
Given a matrix:
[
[1 ,2 ,3 ,6 ,5],
[16,41,23,22,6],
[15,17,24,21,7],
[14,18,19,20,10],
[13,14,11,10,9]
]
return index of 41 (which is [1,1]
) or index of 24 (which is [2,2]
)
方法一:爬梯法/爬山法/夹逼法。
class Solution {
private int[] di = {-1, 1, 0, 0};
private int[] dj = {0, 0, -1, 1};
/**
* @param A: An integer matrix
* @return: The index of the peak
*/
public List<Integer> findPeakII(int[][] A) {
// write your code here
int i = 0, j = 0;
while (true) {
int max = A[i][j];
int mi = i;
int mj = j;
for(int k = 0; k < 4; k++) {
int ni = i + di[k];
int nj = j + dj[k];
if (ni < 0 || ni >= A.length || nj < 0 || nj >= A[ni].length) continue;
if (A[ni][nj] > max) {
mi = ni;
mj = nj;
max = A[ni][nj];
}
}
if (mi == i && mj == j) {
List<Integer> result = new ArrayList<>(2);
result.add(mi);
result.add(mj);
return result;
}
i = mi;
j = mj;
}
}
}
方法二:二分法。
class Solution {
/**
* @param A: An integer matrix
* @return: The index of the peak
*/
public List<Integer> findPeakII(int[][] A) {
// write your code here
int top = 1, bottom = A.length - 2;
while (top <= bottom) {
int m = (top + bottom) / 2;
int col = maxCol(A, m);
if (A[m][col] < A[m - 1][col]) {
bottom = m - 1;
} else if (A[m][col] < A[m + 1][col]) {
top = m + 1;
} else {
Integer[] result = new Integer[2];
result[0] = m;
result[1] = col;
return Arrays.asList(result);
}
}
return null;
}
private int maxCol(int[][] A, int row) {
int col = 1;
for(int i = 2; i < A[row].length - 1; i++) {
if (A[row][i] > A[row][col]) col = i;
}
return col;
}
}
方法三:两个维度都采用二分法(但我还没有证明)
class Solution {
/**
* @param A: An integer matrix
* @return: The index of the peak
*/
public List<Integer> findPeakII(int[][] A) {
// write your code here
int top = 1, bottom = A.length - 2;
while (top <= bottom) {
int m = (top + bottom) / 2;
int col = maxCol(A, m);
if (A[m][col] < A[m - 1][col]) {
bottom = m - 1;
} else if (A[m][col] < A[m + 1][col]) {
top = m + 1;
} else {
Integer[] result = new Integer[2];
result[0] = m;
result[1] = col;
return Arrays.asList(result);
}
}
return null;
}
private int maxCol(int[][] A, int row) {
int i = 1, j = A[row].length - 2;
while (i <= j) {
int m = (i + j) / 2;
if (A[row][m] < A[row][m - 1]) j = m - 1;
else if (A[row][m] < A[row][m + 1]) i = m + 1;
else return m;
}
return 0;
}
}