LeetCode 465. Optimal Account Balancing

这是一篇关于LeetCode第465题的博客,题目涉及朋友间的金钱借贷。每个交易由(x, y, z)表示,x给了y z元。目标是找出最少的交易次数来结算所有债务。文章提供了一个示例及一种利用类似银行结算的方法来求解问题的思路,并引用了相关讨论论坛的链接作为参考。" 111705901,10295605,Python MQTT连接阿里物联网平台:物联网通讯详解,"['物联网开发', 'MQTT协议', 'Python编程', '阿里云', '嵌入式通信']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题网址:https://leetcode.com/problems/optimal-account-balancing/

A group of friends went on holiday and sometimes lent each other money. For example, Alice paid for Bill's lunch for $10. Then later Chris gave Alice $5 for a taxi ride. We can model each transaction as a tuple (x, y, z) which means person x gave person y $z. Assuming Alice, Bill, and Chris are person 0, 1, and 2 respectively (0, 1, 2 are the person's ID), the transactions can be represented as [[0, 1, 10], [2, 0, 5]].

Given a list of transactions between a group of people, return the minimum number of transactions required to settle the debt.

Note:

  1. A transaction will be given as a tuple (x, y, z). Note that x ≠ y and z > 0.
  2. Person's IDs may not be linear, e.g. we could have the persons 0, 1, 2 or we could also have the persons 0, 2, 6.

Example 1:

Input:
[[0,1,10], [2,0,5]]

Output:
2

Explanation:
Person #0 gave person #1 $10.
Person #2 gave person #0 $5.

Two transactions are needed. One way to settle the debt is person #1 pays person #0 and #2 $5 each.

Example 2:

Input:
[[0,1,10], [1,0,1], [1,2,5], [2,0,5]]

Output:
1

Explanation:
Person #0 gave person #1 $10.
Person #1 gave person #0 $1.
Person #1 gave person #2 $5.
Person #2 gave person #0 $5.

Therefore, person #1 only need to give person #0 $4, and all debt is settled.

方法:用银行结算的思路,首先计算出每个人的最后盈亏,然后用随机的算法找到比较可能的最小值。

参考:https://discuss.leetcode.com/topic/68948/easy-java-solution-with-explanation

public class Solution {
    public int minTransfers(int[][] transactions) {
        Map<Integer, Integer> balances = new HashMap<>();
        for(int[] tran: transactions) {
            balances.put(tran[0], balances.getOrDefault(tran[0], 0) - tran[2]);
            balances.put(tran[1], balances.getOrDefault(tran[1], 0) + tran[2]);
        }
        List<Integer> poss = new ArrayList<>();
        List<Integer> negs = new ArrayList<>();
        for(Map.Entry<Integer, Integer> balance : balances.entrySet()) {
            int val = balance.getValue();
            if (val > 0) poss.add(val);
            else if (val < 0) negs.add(-val);
        }
        int min = Integer.MAX_VALUE;
        Stack<Integer> ps = new Stack<>();
        Stack<Integer> ns = new Stack<>();
        for(int i = 0; i < 10; i++) {
            for(int pos: poss) {
                ps.push(pos);
            }
            for(int neg: negs) {
                ns.push(neg);
            }
            int count = 0;
            while (!ps.isEmpty()) {
                int p = ps.pop();
                int n = ns.pop();
                if (p > n) {
                    ps.push(p - n);
                } else if (p < n) {
                    ns.push(n - p);
                }
                count++;
            }
            min = Math.min(min, count);
            Collections.shuffle(poss);
            Collections.shuffle(negs);
        }
        return min;
    }
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值