LeetCode 123. Best Time to Buy and Sell Stock III(股票买卖)

原题网址:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

方法:双向扫描。

public class Solution {
    private int[] forward(int[] prices) {
        int[] max = new int[prices.length];
        int low = prices[0];
        for(int i=1; i<prices.length; i++) {
            if (prices[i] < low) low = prices[i];
            max[i] = Math.max(max[i-1], prices[i] - low);
        }
        return max;
    }
    
    private int[] backward(int[] prices) {
        int[] max = new int[prices.length];
        int high = prices[prices.length-1];
        for(int i=prices.length-2; i>=0; i--) {
            if (prices[i] > high) high = prices[i];
            max[i] = Math.max(max[i+1], high - prices[i]);
        }
        return max;
    }
    
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length < 2) return 0;
        int[] f = forward(prices);
        int[] b = backward(prices);
        int max = 0;
        for(int i=0; i<prices.length; i++) if (f[i]+b[i]>max) max = f[i]+b[i];
        return max;
    }
}

方法二:动态规划。

public class Solution {
    public int maxProfit(int[] prices) {
        int firstBuy = Integer.MIN_VALUE;
        int firstSell = 0;
        int secondBuy = Integer.MIN_VALUE;
        int secondSell = 0;
        for(int price: prices) {
            firstBuy = Math.max(firstBuy, - price);
            firstSell = Math.max(firstSell, firstBuy + price);
            secondBuy = Math.max(secondBuy, firstSell - price);
            secondSell = Math.max(secondSell, secondBuy + price);
        }
        return secondSell;
    }
}

上面把firstBuy、secondBuy理解为现金值,即买股票(投资)时现金为负数。如果把这两个变量理解为所需的现金数量,会更加容易理解一些:

public class Solution {
    public int maxProfit(int[] prices) {
        if (prices.length <= 1) return 0;
        int firstBuy = Integer.MAX_VALUE;
        int firstSell = 0;
        int secondBuy = Integer.MAX_VALUE;
        int secondSell = 0;
        for(int price : prices) {
            firstBuy = Math.min(firstBuy, price);
            firstSell = Math.max(firstSell, price - firstBuy);
            secondBuy = Math.min(secondBuy, price - firstSell);
            secondSell = Math.max(secondSell, price - secondBuy);
        }
        return secondSell;
    }
}

上面的程序等价于:

public class Solution {
    public int maxProfit(int[] prices) {
        if (prices.length <= 1) return 0;
        int[] buy = new int[2];
        int[] sell = new int[2];
        Arrays.fill(buy, Integer.MAX_VALUE);
        for(int price : prices) {
            for(int j = 0; j < 2; j++) {
                buy[j] = Math.min(buy[j], price - (j == 0 ? 0 : sell[j - 1]));
                sell[j] = Math.max(sell[j], price - buy[j]);
            }
        }
        return sell[1];
    }
}

上面的程序等价于:

public class Solution {
    public int maxProfit(int[] prices) {
        if (prices.length <= 1) return 0;
        int[][] buy = new int[prices.length][2];
        int[][] sell = new int[prices.length][2];
        for(int i = 0; i < prices.length; i++) {
            for(int j = 0; j < 2; j++) {
                if (i == 0 && j == 0) {
                    buy[i][j] = prices[i];
                    sell[i][j] = prices[i] - buy[i][j];
                } else if (i == 0) {
                    buy[i][j] = prices[i] - sell[i][j - 1];
                    sell[i][j] = prices[i] - buy[i][j];
                } else if (j == 0) {
                    buy[i][j] = Math.min(buy[i - 1][j], prices[i]);
                    sell[i][j] = Math.max(sell[i - 1][j], prices[i] - buy[i][j]);
                } else {
                    buy[i][j] = Math.min(buy[i - 1][j], prices[i] - sell[i][j - 1]);
                    sell[i][j] = Math.max(sell[i - 1][j], prices[i] - buy[i][j]);
                }
            }
        }
        return sell[prices.length - 1][1];
    }
}

交换i和j循环变量也是一样的:

public class Solution {
    public int maxProfit(int[] prices) {
        if (prices.length <= 1) return 0;
        int[][] buy = new int[prices.length][2];
        int[][] sell = new int[prices.length][2];
        for(int j = 0; j < 2; j++) {
            for(int i = 0; i < prices.length; i++) {
                if (i == 0 && j == 0) {
                    buy[i][j] = prices[i];
                    sell[i][j] = prices[i] - buy[i][j];
                } else if (i == 0) {
                    buy[i][j] = prices[i] - sell[i][j - 1];
                    sell[i][j] = prices[i] - buy[i][j];
                } else if (j == 0) {
                    buy[i][j] = Math.min(buy[i - 1][j], prices[i]);
                    sell[i][j] = Math.max(sell[i - 1][j], prices[i] - buy[i][j]);
                } else {
                    buy[i][j] = Math.min(buy[i - 1][j], prices[i] - sell[i][j - 1]);
                    sell[i][j] = Math.max(sell[i - 1][j], prices[i] - buy[i][j]);
                }
            }
        }
        return sell[prices.length - 1][1];
    }
}



方法三:动态规划:

public class Solution {
    public int maxProfit(int[] prices) {
        if (prices.length <= 1) return 0;
        int[][] local = new int[3][prices.length];
        int[][] global = new int[3][prices.length];
        for(int i = 1; i <= 2; i++) {
            for(int j = 1; j < prices.length; j++) {
                local[i][j] = Math.max(local[i][j - 1] + prices[j] - prices[j - 1],
                    global[i - 1][j - 1] + Math.max(0, prices[j] - prices[j - 1]));
                global[i][j] = Math.max(global[i][j - 1], local[i][j]);
            }
        }
        return global[2][prices.length - 1];
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值