1052. Linked List Sorting (25)

本文介绍了一种通过构建链表并将其拷贝到vector中进行排序的方法,特别关注了以特定节点为头节点的链表处理及特殊情况下的输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.这道题目主要有两个难点

1)以head为头部的链表不一样包括全部n个,即输入的数据中存在多个链表,但是我们只需要对以head为头部的链表排序输出即可,这也是为什么结果要求我们输出排序后的链表大小,因为这个大小不一定和n相等;

2)head为-1的情况,卡在这里比较久,需要特殊判断,然后输出0 -1


2.采用建立链表,然后拷贝到vector上进行排序输出




AC代码:

//#include<string>
//#include<stack>
//#include<unordered_set>
//#include <sstream>
//#include "func.h"
//#include <list>
#include <iomanip>
#include<unordered_map>
#include<set>
#include<queue>
#include<map>
#include<vector>
#include <algorithm>
#include<stdio.h>
#include<iostream>
#include<string>
#include<memory.h>
#include<limits.h>
#include<stack>
using namespace std;
struct ListNode{
	int val, add;
	ListNode*next;
	ListNode() :val(0), add(0), next(NULL){};
	ListNode(int x) :val(x), add(0), next(NULL){};
};
bool cmp(const ListNode&a, const ListNode&b)
{
	return a.val < b.val;
}
int main(void)
{//链表可能断开,需要用头部所在的链表进行排序
	int n, head;
	cin >> n >> head;
	vector<ListNode> list(100001);
	for (int i = 0; i < n; i++)
	{//读取数据
		int now, val, next;
		scanf("%d %d %d", &now, &val, &next);

		list[now].add = now;//保存地址
		list[now].val = val;//保存val
		if (next != -1)
		{//如果next不为-1,则有节点
			list[now].next = &list[next];//进行连接
			list[next].add = next;//记录next的地址
		}
	}
	vector<ListNode> listOrder(0);//建立一个新的vector
	if (head != -1)
	{
		ListNode* root = &list[head];//记录头部
		while (root)//遍历这个链表
		{
			listOrder.push_back(*root);//压入节点
			root = root->next;
		}
		sort(listOrder.begin(), listOrder.end(), cmp);

		printf("%d %05d\n", listOrder.size(), listOrder[0].add);
		for (int i = 0; i < listOrder.size(); i++)
		{
			printf("%05d %d ", listOrder[i].add, listOrder[i].val);
			if (i != listOrder.size() - 1)
				printf("%05d\n", listOrder[i + 1].add);
			else
				printf("-1\n");
		}
	}
	else//需要对head==-1进行处理,最后一个测试点考察这个
		printf("%d -1\n", listOrder.size());


	return 0;
}


AC代码:

//#include<string>
//#include<stack>
//#include<unordered_set>
//#include <sstream>
//#include "func.h"
//#include <list>
#include <iomanip>
#include<unordered_map>
#include<set>
#include<queue>
#include<map>
#include<vector>
#include <algorithm>
#include<stdio.h>
#include<iostream>
#include<string>
#include<memory.h>
#include<limits.h>
#include<stack>
using namespace std;
struct ListNode{
	int val, add;
	ListNode*next;
	ListNode() :val(0), add(0), next(NULL){};
	ListNode(int x) :val(x), add(0), next(NULL){};
};
bool cmp(const ListNode&a, const ListNode&b)
{
	return a.val < b.val;
}
int main(void)
{//链表可能断开,需要用头部所在的链表进行排序
	int n, head;
	cin >> n >> head;
	vector<ListNode> list(100001);
	for (int i = 0; i < n; i++)
	{//读取数据
		int now, val, next;
		scanf("%d %d %d", &now, &val, &next);

		list[now].add = now;//保存地址
		list[now].val = val;//保存val
		if (next != -1)
		{//如果next不为-1,则有节点
			list[now].next = &list[next];//进行连接
			list[next].add = next;//记录next的地址
		}
	}
	vector<ListNode> listOrder(0);//建立一个新的vector
	if (head != -1)
	{
		ListNode* root = &list[head];//记录头部
		while (root)//遍历这个链表
		{
			listOrder.push_back(*root);//压入节点
			root = root->next;
		}
		sort(listOrder.begin(), listOrder.end(), cmp);

		printf("%d %05d\n", listOrder.size(), listOrder[0].add);
		for (int i = 0; i < listOrder.size(); i++)
		{
			printf("%05d %d ", listOrder[i].add, listOrder[i].val);
			if (i != listOrder.size() - 1)
				printf("%05d\n", listOrder[i + 1].add);
			else
				printf("-1\n");
		}
	}
	else//需要对head==-1进行处理,最后一个测试点考察这个
		printf("%d -1\n", listOrder.size());


	return 0;
}

请参考我给出的代码框架,实现对EMPLOYEE结构体为数据的双向链表排序算法,要求按照按employeeId升序排列 typedef struct linkNode { void* data; //使用空指针使得NODE适配多种数据结构 struct linkNode* preNode; struct linkNode* nextNode; }LINKED_NODE; /*Define the struct of double linked list.*/ typedef struct { LINKED_NODE* head; LINKED_NODE* tail; size_t size; }DOUBLE_LINK_LIST; typedef struct { int employeeId; char name[20]; char ipAddress[30]; char seatNumber[20]; char group[10]; } EMPLOYEE; DOUBLE_LINK_LIST* createDoubleLinkedList() { DOUBLE_LINK_LIST* newList = (DOUBLE_LINK_LIST*)malloc(sizeof(DOUBLE_LINK_LIST)); newList->head = NULL; newList->tail = NULL; newList->size = 0; return newList; } void destroyDoubleLinkedList(DOUBLE_LINK_LIST* list) {} /*Add a new node before the head.*/ void insertHead(DOUBLE_LINK_LIST* list, void* data) // void执政适配其他data类型? {} /*Add a new node after tail.*/ void insertTail(DOUBLE_LINK_LIST* list, void* data) // 如何适配其他data类型? {} /*Insert a new node.*/ void insertNode(DOUBLE_LINK_LIST* list, void* data,int index) // 如何适配其他data类型? {} void deleteHead(DOUBLE_LINK_LIST* list) {} void deleteTail(DOUBLE_LINK_LIST* list) {} void deleteNode(DOUBLE_LINK_LIST* list, int index) {} LINKED_NODE* getNode(DOUBLE_LINK_LIST* list, int index) {} /* 遍历链表,对每个节点执行指定操作*/ void traverseList(DOUBLE_LINK_LIST* list, void (*callback)(void*)) { LINKED_NODE* currentNode = list->head; while (currentNode != NULL) { callback(currentNode->data); currentNode = currentNode->nextNode; } } void printEmployee(void* data) {}
07-25
你可以使用以下代码来实现对EMPLOYEE结构体为数据的双向链表排序算法,按照按employeeId升序排列: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> typedef struct linkNode { void* data; //使用空指针使得NODE适配多种数据结构 struct linkNode* preNode; struct linkNode* nextNode; } LINKED_NODE; /*Define the struct of double linked list.*/ typedef struct { LINKED_NODE* head; LINKED_NODE* tail; size_t size; } DOUBLE_LINK_LIST; typedef struct { int employeeId; char name[20]; char ipAddress[30]; char seatNumber[20]; char group[10]; } EMPLOYEE; DOUBLE_LINK_LIST* createDoubleLinkedList() { DOUBLE_LINK_LIST* newList = (DOUBLE_LINK_LIST*)malloc(sizeof(DOUBLE_LINK_LIST)); newList->head = NULL; newList->tail = NULL; newList->size = 0; return newList; } void destroyDoubleLinkedList(DOUBLE_LINK_LIST* list) { LINKED_NODE* currentNode = list->head; while (currentNode != NULL) { LINKED_NODE* nextNode = currentNode->nextNode; free(currentNode); currentNode = nextNode; } free(list); } /*Add a new node before the head.*/ void insertHead(DOUBLE_LINK_LIST* list, void* data) { LINKED_NODE* newNode = (LINKED_NODE*)malloc(sizeof(LINKED_NODE)); newNode->data = data; newNode->preNode = NULL; newNode->nextNode = list->head; if (list->head != NULL) list->head->preNode = newNode; list->head = newNode; if (list->tail == NULL) list->tail = newNode; list->size++; } /*Add a new node after tail.*/ void insertTail(DOUBLE_LINK_LIST* list, void* data) { LINKED_NODE* newNode = (LINKED_NODE*)malloc(sizeof(LINKED_NODE)); newNode->data = data; newNode->preNode = list->tail; newNode->nextNode = NULL; if (list->tail != NULL) list->tail->nextNode = newNode; list->tail = newNode; if (list->head == NULL) list->head = newNode; list->size++; } /*Insert a new node.*/ void insertNode(DOUBLE_LINK_LIST* list, void* data, int index) { if (index < 0 || index > list->size) { printf("Invalid index\n"); return; } if (index == 0) { insertHead(list, data); return; } if (index == list->size) { insertTail(list, data); return; } LINKED_NODE* currentNode = getNode(list, index); LINKED_NODE* newNode = (LINKED_NODE*)malloc(sizeof(LINKED_NODE)); newNode->data = data; newNode->preNode = currentNode->preNode; newNode->nextNode = currentNode; currentNode->preNode->nextNode = newNode; currentNode->preNode = newNode; list->size++; } void deleteHead(DOUBLE_LINK_LIST* list) { if (list->head == NULL) return; LINKED_NODE* oldHead = list->head; list->head = oldHead->nextNode; if (list->head != NULL) list->head->preNode = NULL; free(oldHead); list->size--; if (list->size == 0) list->tail = NULL; } void deleteTail(DOUBLE_LINK_LIST* list) { if (list->tail == NULL) return; LINKED_NODE* oldTail = list->tail; list->tail = oldTail->preNode; if (list->tail != NULL) list->tail->nextNode = NULL; free(oldTail); list->size--; if (list->size == 0) list->head = NULL; } void deleteNode(DOUBLE_LINK_LIST* list, int index) { if (index < 0 || index >= list->size) { printf("Invalid index\n"); return; } if (index == 0) { deleteHead(list); return; } if (index == list->size - 1) { deleteTail(list); return; } LINKED_NODE* currentNode = getNode(list, index); currentNode->preNode->nextNode = currentNode->nextNode; currentNode->nextNode->preNode = currentNode->preNode; free(currentNode); list->size--; } LINKED_NODE* getNode(DOUBLE_LINK_LIST* list, int index) { if (index < 0 || index >= list->size) { printf("Invalid index\n"); return NULL; } LINKED_NODE* currentNode = list->head; int i = 0; while (i < index) { currentNode = currentNode->nextNode; i++; } return currentNode; } void traverseList(DOUBLE_LINK_LIST* list, void (*callback)(void*)) { LINKED_NODE* currentNode = list->head; while (currentNode != NULL) { callback(currentNode->data); currentNode = currentNode->nextNode; } } void printEmployee(void* data) { EMPLOYEE* employee = (EMPLOYEE*)data; printf("Employee ID: %d, Name: %s\n", employee->employeeId, employee->name); } int compareEmployee(const void* a, const void* b) { EMPLOYEE* employeeA = (EMPLOYEE*)a; EMPLOYEE* employeeB = (EMPLOYEE*)b; return employeeA->employeeId - employeeB->employeeId; } void sortList(DOUBLE_LINK_LIST* list) { size_t dataSize = sizeof(EMPLOYEE); EMPLOYEE** employeeArray = (EMPLOYEE**)malloc(list->size * sizeof(EMPLOYEE*)); LINKED_NODE* currentNode = list->head; size_t i = 0; while (currentNode != NULL) { employeeArray[i] = (EMPLOYEE*)currentNode->data; currentNode = currentNode->nextNode; i++; } qsort(employeeArray, list->size, dataSize, compareEmployee); currentNode = list->head; i = 0; while (currentNode != NULL) { currentNode->data = employeeArray[i]; currentNode = currentNode->nextNode; i++; } free(employeeArray); } int main() { DOUBLE_LINK_LIST* list = createDoubleLinkedList(); EMPLOYEE* employee1 = (EMPLOYEE*)malloc(sizeof(EMPLOYEE)); employee1->employeeId = 2; strcpy(employee1->name, "John"); insertHead(list, employee1); EMPLOYEE* employee2 = (EMPLOYEE*)malloc(sizeof(EMPLOYEE)); employee2->employeeId = 1; strcpy(employee2->name, "Alice"); insertHead(list, employee2); EMPLOYEE* employee3 = (EMPLOYEE*)malloc(sizeof(EMPLOYEE)); employee3->employeeId = 3; strcpy(employee3->name, "Bob"); insertHead(list, employee3); printf("Before sorting:\n"); traverseList(list, printEmployee); sortList(list); printf("\nAfter sorting:\n"); traverseList(list, printEmployee); destroyDoubleLinkedList(list); return 0; } ``` 这段代码首先定义了双向链表的结构体和EMPLOYEE结构体,然后实现了双向链表的创建、销毁、插入、删除、遍历等操作。其中,`sortList`函数使用了快速排序算法对双向链表中的EMPLOYEE结构体按照employeeId升序进行排序。在`main`函数中,创建了一个双向链表并插入了三个EMPLOYEE结构体,然后调用`sortList`函数对链表进行排序并输出结果。 请注意,在代码中使用了动态内存分配(`malloc`)来分配内存,并在适当的时候使用了`free`来释放内存,以防止内存泄漏。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值