回溯算法框架
其实回溯算法和我们常说的 DFS 算法非常类似,本质上就是一种暴力穷举算法。回溯算法和 DFS 算法的细微差别是:回溯算法是在遍历「树枝」,DFS 算法是在遍历「节点」
回溯算法是笔试中最好用的算法,只要你没什么思路,就用回溯算法暴力求解,即便不能通过所有测试用例,多少能过一点
解决一个回溯问题,实际上就是一个决策树的遍历过程,站在回溯树的一个节点上,你只需要思考 3 个问题:
1、路径:也就是已经做出的选择。
2、选择列表:也就是你当前可以做的选择。
3、结束条件:也就是到达决策树底层,无法再做选择的条件。
伪代码框架如下:
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」
写 backtrack
函数时,需要维护走过的「路径」和当前可以做的「选择列表」,当触发「结束条件」时,将「路径」记入结果集。
其实想想看,回溯算法和动态规划是不是有点像呢?我们在动态规划系列文章中多次强调,动态规划的三个需要明确的点就是「状态」「选择」和「base case」,是不是就对应着走过的「路径」,当前的「选择列表」和「结束条件」?
初步认识
全排列
我们先来看一道简单的体会一下决策的过程
比方说给三个数 [1,2,3]
,一般是固定第一位,再选择第二位上的数字
为啥说这是决策树呢,因为你在每个节点上其实都在做决策。
我们定义的 backtrack
函数其实就像一个指针,在这棵树上游走,同时要正确维护每个节点的属性,每当走到树的底层叶子节点,其「路径」就是一个全排列。
N 皇后
给你一个
N×N
的棋盘,让你放置N
个皇后,使得它们不能互相攻击。皇后可以攻击同一行、同一列、左上左下右上右下四个方向的任意单位返回所有不同的 n 皇后问题 的解决方案
这个问题本质上跟全排列问题差不多,决策树的每一层表示棋盘上的每一行;每个节点可以做出的选择是,在该行的任意一列放置一个皇后
因为皇后是一行一行从上往下放的,所以左下方,右下方和正下方不用检查(还没放皇后);因为一行只会放一个皇后,所以每行不用检查。也就是最后只用检查上面,左上,右上三个方向。
划分为k个相等的子集
给你输入一个数组
nums
和一个正整数k
,请你判断nums
是否能够被平分为元素和相同的k
个子集
回溯算法的关键是知道怎么做选择,这样才能利用递归函数进行穷举。
那么模仿排列公式的推导思路,将 n
个数字分配到 k
个桶里,我们也可以有两种视角:
视角一,如果我们切换到这 n
个数字的视角,每个数字都要选择进入到 k
个桶中的某一个。
视角二,如果我们切换到这 k
个桶的视角,对于每个桶,都要遍历 nums
中的 n
个数字,然后选择是否将当前遍历到的数字装进自己这个桶里。
用不同的视角进行穷举,虽然结果相同,但是解法代码的逻辑完全不同,进而算法的效率也会不同;对比不同的穷举视角,可以帮你更深刻地理解回溯算法,我们慢慢道来。
视角一
和二叉树一样我们可以写出遍历数组的递归函数
void traverse(int[] nums, int index) {
if (index == nums.length) {
return;
}
System.out.println(nums[index]);
traverse(nums, index + 1);
}
这种穷举的优化方式就是剪枝(比如桶内数之和大于target就跳过循环),也可以提前对数组进行排序,不过这种视角还是耗时较多
// 主函数
boolean canPartitionKSubsets(int[] nums, int k) {
// 排除一些基本情况
if (k > nums.length) return false;
int sum = 0;
for (int v : nums) sum += v;
if (sum % k != 0) return false;
// k 个桶(集合),记录每个桶装的数字之和
int[] bucket = new int[k];
// 理论上每个桶(集合)中数字的和
int target = sum / k;
// 穷举,看看 nums 是否能划分成 k 个和为 target 的子集
return backtrack(nums, 0, bucket, target);
}
// 递归穷举 nums 中的每个数字
boolean backtrack(
int[] nums, int index, int[] bucket, int target) {
if (index == nums.length) {
// 检查所有桶的数字之和是否都是 target
for (int i = 0; i < bucket.length; i++) {
if (bucket[i] != target) {
return false;
}
}
// nums 成功平分成 k 个子集
return true;
}
// 穷举 nums[index] 可能装入的桶
for (int i = 0; i < bucket.length; i++) {
// 剪枝,桶装装满了
if (bucket[i] + nums[index] > target) {
continue;
}
// 将 nums[index] 装入 bucket[i]
bucket[i] += nums[index];
// 递归穷举下一个数字的选择
if (backtrack(nums, index + 1, bucket, target)) {
return true;
}
// 撤销选择
bucket[i] -= nums[index];
}
// nums[index] 装入哪个桶都不行
return false;
}
视角二
以桶的视角进行穷举,每个桶需要遍历 nums
中的所有数字,决定是否把当前数字装进桶中;当装满一个桶之后,还要装下一个桶,直到所有桶都装满为止。
代码表示如下
// 装满所有桶为止
while (k > 0) {
// 记录当前桶中的数字之和
int bucket = 0;
for (int i = 0; i < nums.length; i++) {
// 决定是否将 nums[i] 放入当前桶中
if (canAdd(bucket, num[i]