回溯算法和BFS

回溯算法框架

其实回溯算法和我们常说的 DFS 算法非常类似,本质上就是一种暴力穷举算法。回溯算法和 DFS 算法的细微差别是:回溯算法是在遍历「树枝」,DFS 算法是在遍历「节点」

回溯算法是笔试中最好用的算法,只要你没什么思路,就用回溯算法暴力求解,即便不能通过所有测试用例,多少能过一点

解决一个回溯问题,实际上就是一个决策树的遍历过程,站在回溯树的一个节点上,你只需要思考 3 个问题:

1、路径:也就是已经做出的选择。

2、选择列表:也就是你当前可以做的选择。

3、结束条件:也就是到达决策树底层,无法再做选择的条件。

伪代码框架如下:

result = []
def backtrack(路径, 选择列表):
    if 满足结束条件:
        result.add(路径)
        return
    
    for 选择 in 选择列表:
        做选择
        backtrack(路径, 选择列表)
        撤销选择

其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」

backtrack 函数时,需要维护走过的「路径」和当前可以做的「选择列表」,当触发「结束条件」时,将「路径」记入结果集

其实想想看,回溯算法和动态规划是不是有点像呢?我们在动态规划系列文章中多次强调,动态规划的三个需要明确的点就是「状态」「选择」和「base case」,是不是就对应着走过的「路径」,当前的「选择列表」和「结束条件」?

初步认识

全排列

我们先来看一道简单的体会一下决策的过程

比方说给三个数 [1,2,3],一般是固定第一位,再选择第二位上的数字

在这里插入图片描述

为啥说这是决策树呢,因为你在每个节点上其实都在做决策。

我们定义的 backtrack 函数其实就像一个指针,在这棵树上游走,同时要正确维护每个节点的属性,每当走到树的底层叶子节点,其「路径」就是一个全排列

N 皇后

给你一个 N×N 的棋盘,让你放置 N 个皇后,使得它们不能互相攻击。皇后可以攻击同一行、同一列、左上左下右上右下四个方向的任意单位

返回所有不同的 n 皇后问题 的解决方案

这个问题本质上跟全排列问题差不多,决策树的每一层表示棋盘上的每一行;每个节点可以做出的选择是,在该行的任意一列放置一个皇后

因为皇后是一行一行从上往下放的,所以左下方,右下方和正下方不用检查(还没放皇后);因为一行只会放一个皇后,所以每行不用检查。也就是最后只用检查上面,左上,右上三个方向。

划分为k个相等的子集

给你输入一个数组 nums 和一个正整数 k,请你判断 nums 是否能够被平分为元素和相同的 k 个子集

回溯算法的关键是知道怎么做选择,这样才能利用递归函数进行穷举。

那么模仿排列公式的推导思路,将 n 个数字分配到 k 个桶里,我们也可以有两种视角:

视角一,如果我们切换到这 n 个数字的视角,每个数字都要选择进入到 k 个桶中的某一个

视角二,如果我们切换到这 k 个桶的视角,对于每个桶,都要遍历 nums 中的 n 个数字,然后选择是否将当前遍历到的数字装进自己这个桶里

用不同的视角进行穷举,虽然结果相同,但是解法代码的逻辑完全不同,进而算法的效率也会不同;对比不同的穷举视角,可以帮你更深刻地理解回溯算法,我们慢慢道来

视角一

和二叉树一样我们可以写出遍历数组的递归函数

void traverse(int[] nums, int index) {
   
    if (index == nums.length) {
   
        return;
    }
    System.out.println(nums[index]);
    traverse(nums, index + 1);
}

这种穷举的优化方式就是剪枝(比如桶内数之和大于target就跳过循环),也可以提前对数组进行排序,不过这种视角还是耗时较多

// 主函数
boolean canPartitionKSubsets(int[] nums, int k) {
   
    // 排除一些基本情况
    if (k > nums.length) return false;
    int sum = 0;
    for (int v : nums) sum += v;
    if (sum % k != 0) return false;

    // k 个桶(集合),记录每个桶装的数字之和
    int[] bucket = new int[k];
    // 理论上每个桶(集合)中数字的和
    int target = sum / k;
    // 穷举,看看 nums 是否能划分成 k 个和为 target 的子集
    return backtrack(nums, 0, bucket, target);
}

// 递归穷举 nums 中的每个数字
boolean backtrack(
    int[] nums, int index, int[] bucket, int target) {
   

    if (index == nums.length) {
   
        // 检查所有桶的数字之和是否都是 target
        for (int i = 0; i < bucket.length; i++) {
   
            if (bucket[i] != target) {
   
                return false;
            }
        }
        // nums 成功平分成 k 个子集
        return true;
    }
    
    // 穷举 nums[index] 可能装入的桶
    for (int i = 0; i < bucket.length; i++) {
   
        // 剪枝,桶装装满了
        if (bucket[i] + nums[index] > target) {
   
            continue;
        }
        // 将 nums[index] 装入 bucket[i]
        bucket[i] += nums[index];
        // 递归穷举下一个数字的选择
        if (backtrack(nums, index + 1, bucket, target)) {
   
            return true;
        }
        // 撤销选择
        bucket[i] -= nums[index];
    }

    // nums[index] 装入哪个桶都不行
    return false;
}

视角二

以桶的视角进行穷举,每个桶需要遍历 nums 中的所有数字,决定是否把当前数字装进桶中;当装满一个桶之后,还要装下一个桶,直到所有桶都装满为止

代码表示如下

// 装满所有桶为止
while (k > 0) {
   
    // 记录当前桶中的数字之和
    int bucket = 0;
    for (int i = 0; i < nums.length; i++) {
   
        // 决定是否将 nums[i] 放入当前桶中
        if (canAdd(bucket, num[i]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值