线性时间选择

本文介绍了一种基于快速排序基准选择优化的线性时间选择算法,该算法通过一系列步骤找到未排序数组中第k小的元素,适用于需要高效查找特定元素的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这相当于是对于快速排序的基准选择的一个优化,使得选择算法达到线性时间。
#include<iostream>
#include<cstdio>
#include <algorithm>
#include<functional>

void Swap(int &a, int &b)
{
	int temp = a;
	a = b;
	b = temp;
}
int compare(const void *a, const void *b)
{
    int *pa = (int*)a;
    int *pb = (int*)b;
    return (*pa) - (*pb);  //从小到大排序  
}

// int Partition(int a[], int p, int r, int x)//以第一个位置作为分割起点
// {
// 	int i = p, j = r;//起点,终点
// 	int t = a[x];//分割点
// 	a[0] = a[x];
// 	a[x] = a[p];
// 	a[p] = t;//分割点放到第一个位置
// 	while (i < j)
// 	{
// 		while (a[j] > t&&i < j) --j;
// 		a[i] = a[j];
// 		while (a[i] < t&&i < j) ++i;
// 		a[j] = a[i];
// 	}
// 	a[i] = a[0];
// 	return i;//返回结束后分割点所在的位置
// }
int Partition(int a[], int p, int r,int x)//以第一个位置作为分割起点
{
	int i = p, j = r + 1,t=a[x];
	Swap(a[p] , a[x]);
	while (true)
	{
		while (a[++i] < t&&i < r);
		while (a[--j] > t);
		if (i >= j) break;
		Swap(a[i], a[j]);
	}
	a[p] = a[j];
	a[j] = t;
	return j;//返回结束后分割点所在的位置
}

int select(int a[], int p, int r, int k)//线性时间选择  在a[p:r]中选择第K小元素  的位置
{
	if (r-p<75)//直接对a[p:r]排序;
	{
		qsort(a + p, r - p + 1, sizeof(int), compare);
			return p + k -1;
	}
	int n;
	for (int i = 0;i <= (r - p - 4) / 5;i++)
	{
		//将a[p+5*i]至a[p+5*i+4]的第3小元素与a[p+i]交换位置

		qsort(a + 5 * i + p, 5, sizeof(int), compare);
		Swap(a[p + 5 * i + 2], a[p + i]);
		n = i+1;
	}
	int flag = 0;
	if ((r-p-5*n+1)!=0)
	{
		qsort(a + 5*n + p, r - p - 5 * n + 1, sizeof(int),compare);
		Swap(a[(r + p + 5 * n) / 2], a[p + n]);
		flag = 1;
	}
	//找中位数的中位数
	int x = select(a, p, p + (r - p - 4) / 5 + flag - 1,  ((r - p - 4) / 5 + flag - 1)/2);//T(n/5)
	//int x = select(a, p, p + (r - p - 4) / 5, p + (r - p - 4) / 10);
	//以x作为分割点进行分割
	int i = Partition(a, p, r, x), j = i - p + 1;
	flag = 0;
	if (k <= j) return select(a, p, i, k);
	else        return select(a, i + 1, r, k - j);    
}
int a[2000100];
int main()
{
	int x, y,i=1;
	//freopen("in1.txt", "r", stdin);
	while (scanf("%d,%d", &x, &y)!=EOF)
	{
		a[i++] = y;
	}
	int t = select(a, 1, i - 1, i / 2);
	printf("%d\n",a[t]) ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值