题目
- Total Accepted: 11746
- Total Submissions: 26572
- Difficulty: Medium
- Contributors: kevin.xinzhao@gmail.com
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols +
and -
. For each integer, you should choose one from +
and -
as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3. Output: 5 Explanation: -1+1+1+1+1 = 3 +1-1+1+1+1 = 3 +1+1-1+1+1 = 3 +1+1+1-1+1 = 3 +1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
思路
题意是给定一个数组,其中每个数可以赋予正负号的一个,问有多少可能的情况使得赋予符号后的数组和为指定的值。
思路是从构建一颗二叉树,树根的值为0,两条边分别指向正号的a1和负号的a1。其它每个点发出的两条边分别指向正的下一个数和负的下一个数。遍历这棵并记录所有结点的和,到了叶结点,就得到了一种可能的和,将其与给定值做对比,相同则说明得到了一种满足要求的符号分配。
源程序
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
int i = 0,s = 0,n = 0;
dfs(nums,i + 1,s + nums[i],n,S);
dfs(nums,i + 1,s - nums[i],n,S);
return n;
}
void dfs(vector<int>& nums,int i,int s,int &n,int S){
if(i == nums.size()){
if(s == S)
n ++;
}
else{
dfs(nums,i + 1,s + nums[i],n,S);
dfs(nums,i + 1,s - nums[i],n,S);
}
}
};