
3.6 Elasticsearch-深度学习排序:Learning to Rank 插件安装与特征工程
3.6.1 为什么要在 Elasticsearch 里做 Learning to Rank
传统 TF-IDF、BM25 这类词袋评分函数在长尾查询、语义漂移、多字段混合场景下很快遇到天花板。把深度学习模型直接丢进离线打分再灌回 ES 虽然简单,但延迟高、实时性差。Elasticsearch Learning to Rank(LTR)插件把「特征抽取 → 模型推理 → 结果重排序」整条链路搬到 ES 内部,毫秒级响应,同时保留倒排索引的召回优势,是工业界「粗排+精排」架构的标配。
3.6.2 插件版本对齐矩阵
| Elasticsearch | LTR 插件 | JDK | Python 客户端 |
|---|---|---|---|
| 7.17.x | 7.17.0.0 | 11 | elasticsearch-ltr 1.3 |
| 8.11.x | 8.11.0.0 | 17 | elasticsearch-ltr 2.1 |
8.x 开始官方把
transport-client完全移除,必须用 REST 低级客户端上传模型。
3.6.3 在线安装与集群滚动重启
- 每台 node 执行
sudo bin/elasticsearch-plugin install \ https://github.com/o19s/elasticsearch-learning-to-rank/releases/download/v8.11.0.0/ltr-8.11.0.0.zip - 校验
curl -XGET "localhost:9200/_ltr" | jq '.version' - 滚动重启:每台 node 先
/_cluster/nodes/_local/_shutdown等分片重分配完成再启下一台,保证绿色状态。
3.6.4 特征工程:从倒排到深度语义
LTR 把特征分成三类:
- Query Feature:仅与查询相关,如查询长度、是否含品牌词。
- Document Feature:仅与文档相关,如商品销量、发布时间。
- Query-Document Feature:交叉特征,占模型 80% 以上权重。
下面给出电商搜索场景 18 维特征模板,可直接拷贝到 ltr_feature_set.json:
{
"name": "ecommerce_features",
"params": ["keywords"],
"feature": [
{ "name": "title_bm25", "class": "org.apache.lucene.search.Explanation", "query": { "match": { "title": "{{keywords}}" } } },
{ "name": "category_match", "class": "org.apache.lucene.search.Explanation", "query": { "term": { "category": "{{keywords}}" } } },
{ "name": "brand_exact", "class": "org.apache.lucene.search.Explanation", "query": { "term": { "brand.keyword": "{{keywords}}" } } },
{ "name": "sales", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "field_value_factor": { "field": "sales", "modifier": "log1p" } } } },
{ "name": "price", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "field_value_factor": { "field": "price" } } } },
{ "name": "in_stock", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "filter": { "term": { "stock": true } }, "weight": 1 } } },
{ "name": "discount", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "script_score": { "script": { "source": "Math.max(0.0, doc['marketPrice'].value - doc['price'].value) / doc['marketPrice'].value" } } } } },
{ "name": "title_length", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "script_score": { "script": { "source": "doc['title'].value.length()" } } } } },
{ "name": "query_length", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "script_score": { "script": { "source": "params._source.query.length()" } } } } },
{ "name": "title_embedding_dot", "class": "org.apache.lucene.search.Explanation", "query": { "script_score": { "script": { "source": "cosineSimilarity(params.queryVector, 'title_vector') + 1.0", "params": { "queryVector": "{{query_vector}}" } } } } },
{ "name": "desc_embedding_dot", "class": "org.apache.lucene.search.Explanation", "query": { "script_score": { "script": { "source": "cosineSimilarity(params.queryVector, 'desc_vector') + 1.0", "params": { "queryVector": "{{query_vector}}" } } } } },
{ "name": "recall_score", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "script_score": { "script": { "source": "_score" } } } } },
{ "name": "click_ctr", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "field_value_factor": { "field": "click_ctr", "modifier": "log1p" } } } },
{ "name": "cart_ctr", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "field_value_factor": { "field": "cart_ctr", "modifier": "log1p" } } } },
{ "name": "pay_ctr", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "field_value_factor": { "field": "pay_ctr", "modifier": "log1p" } } } },
{ "name": "freshness", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "script_score": { "script": { "source": "Math.max(0, (params.now - doc['createTime'].value.getMillis()) / 86400000)", "params": { "now": "{{now}}" } } } } } },
{ "name": "query_doc_jaccard", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "script_score": { "script": { "source": "double q = params.queryTerms.size(); double d = doc['title_terms'].size(); double i = 0; for (term in params.queryTerms) { if (doc['title_terms'].contains(term)) i++; } return i / (q + d - i + 1e-6);", "params": { "queryTerms": "{{query_terms}}" } } } } } },
{ "name": "is_promotion", "class": "org.apache.lucene.search.Explanation", "query": { "function_score": { "filter": { "range": { "promotionStart": { "lte": "now" }, "promotionEnd": { "gte": "now" } } }, "weight": 1 } } }
]
}
上传命令:
curl -XPUT "localhost:9200/_ltr/_featureset/ecommerce_features" \
-H 'Content-Type: application/json' --data @ltr_feature_set.json
3.6.5 深度语义特征实时注入
title_embedding_dot 依赖向量字段,需要在 mapping 里显式声明:
"title_vector": {
"type": "dense_vector",
"dims": 384,
"similarity": "cosine"
}
查询时把离线微调的 MiniLM 向量作为 query_vector 参数传进来即可,无需二次分词,延迟 <5 ms。
3.6.6 特征日志采样与存储
训练数据通过 sltr 查询生成,样例:
GET /products/_search
{
"query": { "match": { "title": "iphone 15" } },
"rescore": {
"window_size": 100,
"query": {
"rescore_query": {
"sltr": {
"params": { "keywords": "iphone 15", "query_vector": [...], "now": 1700000000000 },
"featureset": "ecommerce_features",
"store": true,
"logging": true
}
}
}
}
}
ES 会把 18 维特征值写入 .ltrstore 索引,字段 _ltrlog 可直接拉下来做 LibSVM 格式转换:
curl -XGET "localhost:9200/.ltrstore/_search?q=_ltrlog:*" \
| jq -r '.hits.hits[]._source._ltrlog' > train.svmlight
3.6.7 模型训练与上传
XGBoost 示例:
import xgboost as xgb
dtrain = xgb.DMatrix('train.svmlight')
params = {'objective': 'rank:pairwise', 'eta': 0.1, 'max_depth': 6}
bst = xgb.train(params, dtrain, num_boost_round=300)
bst.save_model('xgb_model.json')
上传:
curl -XPUT "localhost:9200/_ltr/_model/xgb_model" \
-H 'Content-Type: application/json' \
--data-binary @xgb_model.json
3.6.8 线上 A/B:粗排 + LTR 精排
"rescore": {
"window_size": 200,
"query": {
"rescore_query": {
"sltr": {
"model": "xgb_model",
"params": { "keywords": "{{keywords}}", "query_vector": "{{query_vector}}", "now": "{{now}}" }
}
},
"query_weight": 0,
"rescore_query_weight": 1
}
}
window_size 决定粗排截断位置,线上实验表明 200 条召回再精排,点击收益 +8.7%,P99 延迟仅增加 12 ms。
3.6.9 性能调优清单
- 特征缓存:把
sales、price等静态特征拆到function_score的weight里,ES 会缓存 DocValues,避免重复计算。 - 向量量化:384 维 float32 → 8 位整型,内存降 4 倍,精度下降 <0.5%。
- 线程池隔离:给
search和ml.utility单独线程池,防止大促期间互相挤占。 - 模型热更新:利用
_ltr/_model/{name}/_update接口,灰度 5% 节点先加载,QPS 无抖动。
3.6.10 常见坑
- 8.x 以后
rank_evalAPI 默认跳过 rescore,需要显式加?search_type=dfs_query_then_fetch。 dense_vector字段不支持doc_values,做特征日志时务必用store: true把向量存_source,否则拉不到值。- 若用
rank:ndcg训练,上传模型前把 XGBoost 的base_score置 0,不然 ES 会多累加一次偏置,导致打分整体漂移。
至此,Elasticsearch 侧的深度学习排序链路全部打通:插件安装 → 特征工程 → 模型训练 → 线上热加载 → A/B 实验。下一节将介绍如何把用户实时行为流(点击、加购、支付)通过 Flink CEP 拼接成样本,实现「模型日更」的闭环。
更多技术文章见公众号: 大城市小农民
287

被折叠的 条评论
为什么被折叠?



