原文出处:排序算法总结
#include "stdafx.h"
#include <iostream>
#include <time.h>
using namespace std;
/**1. 冒泡排序*/
//时间复杂度为O(N ^ 2),空间复杂度为O(1)。排序是稳定的
void bubble_sort(int arr[], int len){
//每次从后往前冒一个最小值,且每次能确定一个数在序列中的最终位置
for (int i = 0; i < len - 1; i++){ //比较n-1次
bool exchange = true; //冒泡的改进,若在一趟中没有发生逆序,则该序列已有序
for (int j = len - 1; j >i; j--){ // 每次从后边冒出一个最小值
if (arr[j] < arr[j - 1]){ //发生逆序,则交换
swap(arr[j], arr[j - 1]);
exchange = false;
}
}
if (exchange){
return;
}
}
}
/**2. 插入排序*/
//时间复杂度为O(N^2),空间复杂度为O(1)。算法是稳定的
void insert_sort(int arr[], int len){
//每次把当前的数往前插入,可以顺序插入,改进的可以进行二分插入
for (int i = 1; i < len; i++){
if (arr[i] < arr[i - 1]){ //发生逆序,往前插入
int temp = arr[i];
int j;
for (j = i - 1; j >= 0 && arr[j]>temp; j--){
arr[j + 1] = arr[j];
}
arr[j + 1] = temp;
}
}
}
void insert_binary_sort(int arr[], int len){
//改进的插入排序,往前插入比较时,进行二分查找
for (int i = 1; i < len; i++){
if (arr[i] < arr[i - 1]){
int temp = arr[i];
int low = 0, high = i - 1, mid;
while (low <= high){
mid = (low + high) / 2;
if (temp < arr[mid]){
high = mid - 1;
}
else{
low = mid + 1;
}
}
for (int j = i; j >low; j--){
arr[j] = arr[j - 1];
}
arr[low] = temp;
}
}
}
/**3. 希尔排序*/
void shell_sort(int arr[], int len){
//每次选择一个gap,对相隔gap的数进行插入排序
for (int gap = len / 2; gap > 0; gap /= 2){
for (int i = 0; i < len; i = i + gap){
int temp = arr[i];
int j;
for (j = i; j >= gap && temp < arr[j - gap]; j -= gap){
arr[j] = arr[j - gap];
}
arr[j] = temp;
}
}
}
/**4. 选择排序*/
void select_sort(int arr[], int len){
//每次从后边选择一个最小值
for (int i = 0; i < len - 1; i++){ //只需选择n-1次
int min = i;
for (int j = i + 1; j < len; j++){
if (arr[min]>arr[j]){
min = j;
}
}
if (min != i){
swap(arr[i], arr[min]);
}
}
}
/**5. 快速排序*/
//快速排序
int partition(int arr[], const int left, const int right){
//对序列进行划分,以第一个为基准
int pivot = arr[left];
int pivotpos = left;
for (int i = left + 1; i <= right; i++){
if (arr[i] < pivot){
pivotpos++;
if (pivotpos != i){ //如果交换元素就位于基准后第一个,则不需要交换
swap(arr[i], arr[pivotpos]);
}
}
}
arr[left] = arr[pivotpos];
arr[pivotpos] = pivot;
return pivotpos;
}
void quick_sort(int arr[], const int left, const int right){
if (left < right){
int pivotpos = partition(arr, left, right);
quick_sort(arr, left, pivotpos - 1);
quick_sort(arr, pivotpos + 1, right);
}
}
void quick_sort(int arr[], int len){
quick_sort(arr, 0, len - 1);
}
int improve_partition(int arr[], int left, int right){
//基准进行随机化处理
int n = right - left + 1;
srand(time((unsigned)0));
int gap = rand() % n;
swap(arr[left], arr[left + gap]); //把随机化的基准与左边进行交换
//再从左边开始进行
return partition(arr, left, right);
}
void quick_improve_sort(int arr[], const int left, const int right){
//改进的快速排序
//改进的地方:1、在规模较小时采用插入排序
//2、基准进行随机选择
int M = 5;
if (right - left < M){
insert_sort(arr, right - left + 2);
}
if (left >= right){
return;
}
int pivotpos = improve_partition(arr, left, right);
quick_improve_sort(arr, left, pivotpos - 1);
quick_improve_sort(arr, pivotpos + 1, right);
}
void quick_improve_sort(int arr[], int len){
quick_improve_sort(arr, 0, len - 1);
}
/**6. 归并排序*/
//归并排序
void merge(int arr[], int temp_arr[], int left, int mid, int right){
//简单归并:先复制到temp_arr,再进行归并
for (int i = left; i <= right; i++){
temp_arr[i] = arr[i];
}
int pa = left, pb = mid + 1;
int index = left;
while (pa <= mid && pb <= right){
if (temp_arr[pa] <= temp_arr[pb]){
arr[index++] = temp_arr[pa++];
}
else{
arr[index++] = temp_arr[pb++];
}
}
while (pa <= mid){
arr[index++] = temp_arr[pa++];
}
while (pb <= right){
arr[index++] = temp_arr[pb++];
}
}
void merge_improve(int arr[], int temp_arr[], int left, int mid, int right){
//优化归并:复制时,俩头小,中间大,一次比较完
for (int i = left; i <= mid; i++){
temp_arr[i] = arr[i];
}
for (int i = mid + 1; i <= right; i++){
temp_arr[i] = arr[right + mid + 1 - i];
}
int pa = left, pb = right, p = left;
while (p <= right){
if (temp_arr[pa] <= temp_arr[pb]){
arr[p++] = temp_arr[pa++];
}
else{
arr[p++] = temp_arr[pb--];
}
}
}
void merge_sort(int arr[], int temp_arr[], int left, int right){
if (left < right){
int mid = (left + right) / 2;
merge_sort(arr, temp_arr, 0, mid);
merge_sort(arr, temp_arr, mid + 1, right);
merge(arr, temp_arr, left, mid, right);
}
}
void merge_sort(int arr[], int len){
int *temp_arr = (int*)malloc(sizeof(int)*len);
merge_sort(arr, temp_arr, 0, len - 1);
}
/**7. 堆排序*/
void shiftDown(int arr[], int start, int end){
//从start出发到end,调整为最大堆
int dad = start;
int son = dad * 2 + 1;
while (son <= end){
//先选取子节点中较大的
if (son + 1 <= end && arr[son] < arr[son + 1]){
son++;
}
//若子节点比父节点大,则交换,继续往子节点寻找;否则退出
if (arr[dad] < arr[son]){
swap(arr[dad], arr[son]);
dad = son;
son = dad * 2 + 1;
}
else{
break;
}
}
}
void heap_sort(int arr[], int len){
//先调整为最大堆,再依次与第一个交换,进行调整,最后构成最小堆
for (int i = (len - 2) / 2; i >= 0; i--){ //len为总长度,最后一个为len-1,所以父节点为 (len-1-1)/2
shiftDown(arr, i, len - 1);
}
for (int i = len - 1; i >= 0; i--){
swap(arr[i], arr[0]);
shiftDown(arr, 0, i - 1);
}
}
/**8. 基数排序*/
int maxbit(int data[], int n)
{
int d = 1;
for (int i = 0; i<n; i++)
{
int c = 1;
int p = data[i];
while (p / 10)
{
p = p / 10;
c++;
}
if (c>d)
d = c;
}
return d;
}
void RadixSort(int data[], int n)
{
int count[10];
int tmp[10];
int d = maxbit(data, n);
int r = 1;
for (int i = 0; i<d; i++)
{
for (int i = 0; i<10; i++)//装桶之前要先清桶
count[i] = 0;
for (i = 0; i<n; i++) //记录每个桶的记录数
{
int k = data[i] / r;
int q = k % 10;
count[q]++;
}
for (i = 1; i<10; i++)//计算位置
{
count[i] += count[i - 1];
//cout<<count[i]<<" ";
}
for (int j = n - 1; j >= 0; j--)
{
int p = data[j] / r;
int s = p % 10;
tmp[count[s] - 1] = data[j];
count[s]--;
//cout<<data[j]<<" ";
}
for (i = 0; i<n; i++)
{
data[i] = tmp[i];
//cout<<tmp[i]<<" ";
}
// cout<<endl;
r = r * 10;
}
}
int main()
{
int arr[] = { 1, 3, 5, 4, 2, 1, 9,19,18,17,16,19};
int len = 7;
for (int i = 0; i < len; i++){
cout << arr[i] << " ";
}
cout << endl;
RadixSort(arr, len);
for (int i = 0; i < len; i++){
cout << arr[i] << " ";
}
system("pause");
return 0;
}