springboot启动bean加载处理器ConfigurationClassPostProcessor 三(@Import注解)

处理@Import注解注解的具体方法是,ConfigurationClassPostProcessor 中的processImports

private void processImports(ConfigurationClass configClass, SourceClass currentSourceClass,
			Collection<SourceClass> importCandidates, Predicate<String> exclusionFilter,
			boolean checkForCircularImports) {

		if (importCandidates.isEmpty()) {
			return;
		}

		if (checkForCircularImports && isChainedImportOnStack(configClass)) {
			this.problemReporter.error(new CircularImportProblem(configClass, this.importStack));
		}
		else {
			this.importStack.push(configClass);
			try {
				for (SourceClass candidate : importCandidates) {
					if (candidate.isAssignable(ImportSelector.class)) {
						// Candidate class is an ImportSelector -> delegate to it to determine imports
						Class<?> candidateClass = candidate.loadClass();
						ImportSelector selector = ParserStrategyUtils.instantiateClass(candidateClass, ImportSelector.class,
								this.environment, this.resourceLoader, this.registry);
						Predicate<String> selectorFilter = selector.getExclusionFilter();
						if (selectorFilter != null) {
							exclusionFilter = exclusionFilter.or(selectorFilter);
						}
						if (selector instanceof DeferredImportSelector) {
							this.deferredImportSelectorHandler.handle(configClass, (DeferredImportSelector) selector);
						}
						else {
							String[] importClassNames = selector.selectImports(currentSourceClass.getMetadata());
							Collection<SourceClass> importSourceClasses = asSourceClasses(importClassNames, exclusionFilter);
							processImports(configClass, currentSourceClass, importSourceClasses, exclusionFilter, false);
						}
					}
					else if (candidate.isAssignable(ImportBeanDefinitionRegistrar.class)) {
						// Candidate class is an ImportBeanDefinitionRegistrar ->
						// delegate to it to register additional bean definitions
						Class<?> candidateClass = candidate.loadClass();
						ImportBeanDefinitionRegistrar registrar =
								ParserStrategyUtils.instantiateClass(candidateClass, ImportBeanDefinitionRegistrar.class,
										this.environment, this.resourceLoader, this.registry);
						configClass.addImportBeanDefinitionRegistrar(registrar, currentSourceClass.getMetadata());
					}
					else {
						// Candidate class not an ImportSelector or ImportBeanDefinitionRegistrar ->
						// process it as an @Configuration class
						this.importStack.registerImport(
								currentSourceClass.getMetadata(), candidate.getMetadata().getClassName());
						processConfigurationClass(candidate.asConfigClass(configClass), exclusionFilter);
					}
				}
			}
			catch (BeanDefinitionStoreException ex) {
				throw ex;
			}
			catch (Throwable ex) {
				throw new BeanDefinitionStoreException(
						"Failed to process import candidates for configuration class [" +
						configClass.getMetadata().getClassName() + "]", ex);
			}
			finally {
				this.importStack.pop();
			}
		}
	}

看代码思路还是比较清晰的,但是里面也隐藏了很多逻辑的。他这里会有三个判断,也就是说@import注解导入的类型有三种

  1. 具体的class类(没有实现ImportSelector、ImportBeanDefinitionRegistrar接口)
  2. 实现接口 ImportSelector
  3. 实现接口 ImportBeanDefinitionRegistrar

先看下一个总体的处理思路流程
在这里插入图片描述

这里的①我们已经介绍了springboot启动bean加载处理器ConfigurationClassPostProcessor 一(@ComponentScan注解)springboot启动bean加载处理器ConfigurationClassPostProcessor 二(@PropertySource注解),进入这两个注解处理的类都会生成bean定义并加载到spring容器中,@import不同,它在经过processImports处理后都没有及时的加载到容器中。
我们看下对@import注解处理的具体逻辑:

  • 具体的class类,当做类似@Configuration注解处理
  • 实现接口 ImportSelector,如果是DeferredImportSelector类型加入到DeferredImportSelectorHandler;否则会递归执行processImports方法–》加入到configurationClasses 中
  • 实现接口 ImportBeanDefinitionRegistrar,在当前类信息中加入

在parse方法执行后,都会把当前的类加入到configurationClasses 中,@import方法就是在parse执行完后loadBeanDefinitions方法进行处理(ImportSelector中如果是DeferredImportSelector类型会在parse方法后有个专门的DeferredImportSelectorHandler进行先处理),这时候才会加载bean容器中。

其它都好理解,我们来看下DeferredImportSelector类型的处理流程,首先要看下DeferredImportSelectorHandler处理器的实现逻辑,它是个内部类,包含两个方法handle、process,两个方法到具体执行流程都是一样的,会执行processGroupImports,主要判断是deferredImportSelectors ==null

private class DeferredImportSelectorHandler {

		@Nullable
		private List<DeferredImportSelectorHolder> deferredImportSelectors = new ArrayList<>();

		/**
		 * Handle the specified {@link DeferredImportSelector}. If deferred import
		 * selectors are being collected, this registers this instance to the list. If
		 * they are being processed, the {@link DeferredImportSelector} is also processed
		 * immediately according to its {@link DeferredImportSelector.Group}.
		 * @param configClass the source configuration class
		 * @param importSelector the selector to handle
		 */
		public void handle(ConfigurationClass configClass, DeferredImportSelector importSelector) {
			DeferredImportSelectorHolder holder = new DeferredImportSelectorHolder(configClass, importSelector);
			if (this.deferredImportSelectors == null) {
				DeferredImportSelectorGroupingHandler handler = new DeferredImportSelectorGroupingHandler();
				handler.register(holder);
				handler.processGroupImports();
			}
			else {
				this.deferredImportSelectors.add(holder);
			}
		}

		public void process() {
			List<DeferredImportSelectorHolder> deferredImports = this.deferredImportSelectors;
			this.deferredImportSelectors = null;
			try {
				if (deferredImports != null) {
					DeferredImportSelectorGroupingHandler handler = new DeferredImportSelectorGroupingHandler();
					deferredImports.sort(DEFERRED_IMPORT_COMPARATOR);
					deferredImports.forEach(handler::register);
					handler.processGroupImports();
				}
			}
			finally {
				this.deferredImportSelectors = new ArrayList<>();
			}
		}
	}

在这里插入图片描述

结合解析@import过程,会递归的执行processImports直到最后导入的类是普通的类结束。
在这里插入图片描述

飞思卡尔智能车竞赛是一项备受关注的科技赛事,旨在激发学生的创新实践能力,尤其是在嵌入式系统、自动控制机器人技术等关键领域。其中的“电磁组”要求参赛队伍设计并搭建一辆能够自主导航的智能车,通过电磁感应线圈感知赛道路径。本压缩包文件提供了一套完整的电磁组智能车程序,这是一套经过实战验证的代码,曾在校级比赛中获得第二名的优异成绩。 该程序的核心内容可能涉及以下关键知识点: 传感器处理:文件名“4sensor”表明车辆配备了四个传感器,用于获取环境信息。这些传感器很可能是电磁感应传感器,用于探测赛道上的导电线圈。通过分析传感器信号的变化,车辆能够判断自身的行驶方向位置。 数据采集与滤波:在实际运行中,传感器读数可能受到噪声干扰,因此需要进行数据滤波以提高精度。常见的滤波算法包括低通滤波、高斯滤波滑动平均滤波等,以确保车辆对赛道的判断准确无误。 路径规划:车辆需要根据传感器输入实时规划行驶路径。这可能涉及PID(比例-积分-微分)控制、模糊逻辑控制或其他现代控制理论方法,从而确保车辆能够稳定且快速地沿赛道行驶。 电机控制:智能车的驱动通常依赖于直流电机或无刷电机,电机控制是关键环节。程序中可能包含电机速度方向的调节算法,如PWM(脉宽调制)控制,以实现精准的运动控制。 嵌入式系统编程:飞思卡尔智能车的控制器可能基于飞思卡尔微处理器(例如MC9S12系列)。编程语言通常为C或C++,需要掌握微控制器的中断系统、定时器串行通信等功能。 软件架构:智能车软件通常具有清晰的架构,包括任务调度、中断服务程序主循环等。理解优化这一架构对于提升整体性能至关重要。 调试与优化:程序能够在比赛中取得好成绩,说明经过了反复的调试优化。这可能涉及代码效率提升、故障排查以及性能瓶颈的识别解决。 团队协作与版本控制:在项目开发过程中,团队协作版本控制工具(如Git)的应用不可或缺,能够保
双闭环直流电机调速系统是一种高效且应用广泛的直流调速技术。通过设置转速环电流环两个闭环,系统能够对电机的转速电流进行精准控制,从而提升动态响应能力稳定性,广泛应用于工业自动化领域。 主电路设计:主电路采用三相全控桥整流电路,将交流电转换为可调节的直流电,为电机供电。晶闸管作为核心元件,通过调节控制角α实现输出电压的调节。 元部件设计:包括整流变压器、晶闸管、电抗器等元件的设计与参数计算,这些元件的性能直接影响系统的稳定性效率。 保护电路:设计过载保护、短路保护等保护电路,确保系统安全运行。 驱动电路:设计触发电路脉冲变压器,触发电路用于触发晶闸管导通,脉冲变压器用于传递触发信号。 控制器设计:系统核心为转速调节器(ASR)电流调节器(ACR),分别对转速电流进行调控。检测电路用于采集实际转速电流值并反馈给调节器。 仿真分析:利用MATLAB/SIMULINK等工具对系统进行仿真分析,验证其稳定性性能指标是否达标。 方案确定与框图绘制:明确系统构成及各模块连接方式。 主电路设计:选择整流电路形式,设计整流变压器、晶闸管等元部件并计算参数。 驱动电路设计:设计触发电路脉冲变压器,确保晶闸管准确触发。 控制器设计: 转速调节器(ASR):根据转速指令调整实际转速。 电流调节器(ACR):根据ASR输出指令调整电流,实现快速响应。 参数计算:计算给定电压、调节器、检测电路、触发电路稳压电路的参数。 仿真分析:通过软件模拟系统运行状态,评估性能。 电气原理图绘制:完成调速控制电路的电气原理图绘制。 双闭环控制策略:转速环在外,电流环在内,形成嵌套结构,提升动态响应能力。 晶闸管控制角调节:通过改变控制角α调节输出电压,实现转速平滑调节。 仿真分析:借助专业软件验证设计的合理性有效性。 双闭环直流电机调速系统设计涉及主电路、驱动电路控制器设计等多个环节,通过仿
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值