Task4 模型训练与验证

本文探讨了过拟合与欠拟合的现象,指出训练集和验证集损失的关系。介绍了调参方法,如dropout在全连接层的应用,以及如何根据batch-size调整学习率。还提到了多尺度训练在防止过拟合和提高性能上的作用,并讨论了交叉验证的重要性,特别是5-折交叉验证和留一交叉验证的适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

过拟合与欠拟合
过拟合:典型的表现为训练集损失远远小于验证集损失。
欠拟合:则表现为训练集损失大于验证集损失。

调参
1.dropout
一般适合于全连接层部分,而卷积层由于其参数并不是很多,所以不需要dropout,加上的话对模型的泛化能力并没有太大的影响。我们一般在网络的最开始和结束的时候使用全连接层,而hidden layers则是网络中的卷积层。所以一般情况,在全连接层部分,采用较大概率的dropout而在卷积层采用低概率或者不采用dropout。
在这里插入图片描述2.学习率
学习率是一个非常非常重要的超参数,这个参数呢,面对不同规模、不同batch-size、不同优化方式、不同数据集,其最合适的值都是不确定的,我们无法光凭经验来准确地确定lr的值,我们唯一可以做的,就是在训练中不断寻找最合适当前状态的学习率。
越大的batch-size使用越大的学习率。原理很简单,越大的batch-size意味着我们学习的时候,收敛方向的confidence越大,我们前进的方向更加坚定,而小的batch-size则显得比较杂乱,毫无规律性,因为相比批次大的时候,批次小的情况下无法照顾到更多的情况,所以需要小的学习率来保证不至于出错。
差分学习率与迁移学习,在不同的层设置不同的学习率,可以提高神经网络的训练效果,在迁移学习时,我们利用很多预训练的经典模型直接去训练我们自己的任务,在优化部分,我们对网络的预训练部分使用

内容概要:本文详细介绍了水中有限长加肋圆柱壳体振动和声辐射的近似解析解,并提供了完整的Python实现。文中首先阐述了问题背景,即加肋圆柱壳体作为水下航行器的主要结构形式,肋骨的作用被简化为只有法向力。接着,通过一系列关键方程(如模态振动速度方程、壳体机械阻抗、特征矩阵元素等),推导出加肋圆柱壳体的振动和声辐射特性。Python代码部分实现了这些理论,包括定义`CylindricalShell`类来封装所有计算功能,如初始化参数、机械阻抗、辐射阻抗、肋骨阻抗、模态速度、辐射功率和辐射效率的计算。此外,还扩展了带刚性圆柱障板的圆柱壳体类`CylindricalShellWithBaffle`,并引入了集中力激励、简支边界条件和低频段计算的内容。最后,通过具体示例展示了如何创建壳体对象、设置参数、计算频率响应以及绘制结果图表,验证了加肋对辐射声功率和声辐射效率的影响。 适合人群:具备一定编程基础和声学基础知识的研究人员、工程师,特别是从事水下声学、船舶工程和振动分析领域的专业人员。 使用场景及目标:①通过代码实现和理论推导,深入理解加肋圆柱壳体的振动和声辐射特性;②分析肋骨对壳体声学性能的影响,优化结构设计;③利用Python代码进行数值模拟,评估不同参数配置下的声辐射效率和功率;④为实际工程项目提供理论支持和技术参考。 其他说明:本文不仅提供了详细的数学推导和Python代码实现,还讨论了实际应用中的注意事项,如参数调整、高频模态考虑、肋骨模型细化和数值稳定性处理。建议读者结合实际需求,灵活运用文中提供的理论和代码,进行更深入的研究和实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值