You are given a graph with n nodes and m directed edges. One lowercase letter is assigned to each node. We define a path's value as the number of the most frequently occurring letter. For example, if letters on a path are "abaca", then the value of that path is 3. Your task is find a path whose value is the largest.
InputThe first line contains two positive integers n, m (1 ≤ n, m ≤ 300 000), denoting that the graph has n nodes and m directed edges.
The second line contains a string s with only lowercase English letters. The i-th character is the letter assigned to the i-th node.
Then m lines follow. Each line contains two integers x, y (1 ≤ x, y ≤ n), describing a directed edge from x to y. Note that x can be equal to y and there can be multiple edges between x and y. Also the graph can be not connected.
OutputOutput a single line with a single integer denoting the largest value. If the value can be arbitrarily large, output -1 instead.
Examples
Input
5 4
abaca
1 2
1 3
3 4
4 5
Output
3
Input
6 6
xzyabc
1 2
3 1
2 3
5 4
4 3
6 4
Output
-1
Input
10 14
xzyzyzyzqx
1 2
2 4
3 5
4 5
2 6
6 8
6 5
2 10
3 9
10 9
4 6
1 10
2 8
3 7
Output
4
In the first sample, the path with largest value is 1 → 3 → 4 → 5. The value is 3because the letter 'a' appears 3 times.
wa 了7回啊 yyyyyyyyyyyyyy
#include <cstdio>
#include <cmath>
#include <vector>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
#define maxn 300005
#define mst(a,b) memset((a),(b),sizeof(a))
int n,m;
int degree[maxn];
char s[maxn];
int dp[maxn];
vector<int>vec[maxn];
vector<int>mp;
bool check()
{
mp.clear();
queue<int>q;
for(int i=1;i<=n;i++)
{
if(degree[i]==0) q.push(i);
}
while(q.size())
{
int u=q.front();
q.pop();
mp.push_back(u);
for(int i=0;i<vec[u].size();i++)
{
degree[vec[u][i]]--;
if(degree[vec[u][i]]==0) q.push(vec[u][i]);
}
}
return mp.size()==n;
}
int solve(int x)
{
mst(dp,0);
char c=x+'a';
int cnt=0;
for(int i=mp.size()-1;i>=0;i--)
{
int u=mp[i];
for(int j=0;j<vec[u].size();j++)
{
dp[u]=max(dp[u],dp[vec[u][j]]);
}
if(s[u-1]==c) dp[u]++;
cnt=max(cnt,dp[u]);
}
return cnt;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=1;i<=n;i++) vec[i].clear();
scanf("%s",s);
mst(degree,0);
for(int i=0;i<m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
vec[x].push_back(y);
degree[y]++;
}
if(!check())
{
puts("-1");
continue;
}
int ans=0;
for(int i=0;i<26;i++)
{
ans=max(ans,solve(i));
}
printf("%d\n",ans);
}
}