hdu2119—Matrix(最小点覆盖)

本文介绍了一种算法,用于解决给定包含0和1的矩阵中,通过选择删除特定行或列来消除所有1的问题,转化为求解二分图的最大匹配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:传送门

Matrix

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3012    Accepted Submission(s): 1368


Problem Description
Give you a matrix(only contains 0 or 1),every time you can select a row or a column and delete all the '1' in this row or this column .

Your task is to give out the minimum times of deleting all the '1' in the matrix.
 

Input
There are several test cases.

The first line contains two integers n,m(1<=n,m<=100), n is the number of rows of the given matrix and m is the number of columns of the given matrix.
The next n lines describe the matrix:each line contains m integer, which may be either ‘1’ or ‘0’.

n=0 indicate the end of input.
 

Output
For each of the test cases, in the order given in the input, print one line containing the minimum times of deleting all the '1' in the matrix.
 

Sample Input
  
3 3 0 0 0 1 0 1 0 1 0 0
 

Sample Output
  
2
 

Author
Wendell
 



解题思路:将每一行看成一个点ri,将每一列看成一个点ci,在‘1’存在的位置对ri和cj连边,即表示第i行第j列有一个1,最后得到一个二分图。若想要删掉矩形中的所有1,只要删掉二分图的所有边即可,删掉图中的某一个点相当于删掉矩形中的某一行或某一列,最少删掉多少个点能把二分图中的所有边删除,即变成了最小点覆盖问题,即对这个二分图求个最大匹配


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <stack>
#include <queue>

using namespace std;

typedef long long ll;
const int N = 10900;
const int M = 109;
const int INF = 0x3fffffff;
const double eps = 1e-8;
const double PI = acos(-1.0);

struct Edge{
    int node;
    Edge*next;
}m_edge[N];
int girl[M];
Edge*head[M];
int Flag[M],Ecnt,cnt;

void init()
{
    Ecnt = cnt = 0;
    fill( girl , girl+M , 0 );
    fill( head , head+M , (Edge*)0 );
}

//b对g有好感
void mkEdge( int b , int g )
{
    m_edge[Ecnt].node = g;
    m_edge[Ecnt].next = head[b];
    head[b] = m_edge+Ecnt++;
}

bool find( int x )
{
    for( Edge*p = head[x] ; p ; p = p->next ){
        int s = p->node;   //有好感的女生
        if( !Flag[s] ){
            Flag[s] = true; //该女生在本轮匹配中被访问
            if( girl[s] == 0 || find(girl[s]) ){
                //女生没有对象或者另外一个男生能把这个妹纸让给x男
                girl[s] = x;
                return true;
            }
        }
    }
    return false;
}

//构建二分图
void Build( int n , int m )
{
    int r;
    for( int i = 1 ; i <= n ; ++i ){
        for( int j = 1 ; j <= m ; ++j ){
            scanf("%d",&r);
            if( r == 1 ) mkEdge(i,j);
        }
    }
}

void solve( int n )
{
    for( int i =  1 ; i <= n ; ++i ){
        fill( Flag , Flag+M , 0 );
        if( find(i) ) ++cnt;
    }
}

int main()
{
    int n,m;
    while( ~scanf("%d",&n)&&n ){
        scanf("%d",&m);
        init();
        Build(n,m);
        solve(n);
        printf("%d\n",cnt);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值