Win10下用Anaconda3安装TensorFlow和pytorch(python3.5)

本文详细介绍了如何在Anaconda环境下安装Python3.5,并通过pip安装TensorFlow和PyTorch的过程。包括更改Python版本、添加镜像源、升级pip等步骤,最后验证了两个框架是否成功安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、安装Anaconda3。

Anaconda默认Python3.6,由于TensorFlow需要Python3.5,因此需要在root环境下更改Python版本。

2、添加镜像源。
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
3、安装Python3.5。
conda install python=3.5

等一会。

4、升级pip。直接用pip安装TensorFlow会出错。

使用管理员权限打开Anaconda Prompt

pip install --upgrade pip

关闭Anaconda Prompt,重新打开。

5、安装tensorflow。(CPU版本)
pip install --upgrade --ignore -installed tensorflow  
6、测试tensorflow。
spyder

在Spyder中输入:

import tensorflow as tf  
hello = tf.constant('Hello, TensorFlow!')  
sess = tf.Session()  
print(sess.run(hello))  
7、安装pytorch。

先安装

conda install numpy mkl cffi

或者需要升级mkl库

pip install mkl
pip install mkl --upgrade

或者

conda install mkl
conda update mkl

如果想要更新所有库

conda update --all

安装pytorch。(CPU版本)
链接: https://pan.baidu.com/s/10K8x6n2a51hKKD5sc3_9YA 密码: mn7r
下载 pytorch-cpu-0.3.1-py35_cpuhe774522_2.tar.bz2

conda install --offline pytorch-cpu-0.3.1-py35_cpuhe774522_2.tar.bz2
# 测试 tensorflow 和 pytorch是否正常工作
import tensorflow as tf  
import torch
from torch.backends import cudnn

hello = tf.constant('Hello, TensorFlow!')  
sess = tf.Session()  
print(sess.run(hello))

x = torch.Tensor([1, 3])
y = torch.Tensor([2, 4])
z = x + y
# z = z.cuda()    # cpu版本没有cuda  
print(z)
print(cudnn.is_acceptable(x))
(Ranchenyang) C:\Users\tianxuanji>conda install -c conda-forge tensorflow Channels: - conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - defaults - nvidia - pytorch Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: \ warning libmamba Added empty dependency for problem type SOLVER_RULE_UPDATE failed LibMambaUnsatisfiableError: Encountered problems while solving: - package tensorflow-1.7.0-0 requires tensorflow-base 1.7.0, but none of the providers can be installed Could not solve for environment specs The following packages are incompatible ├─ pin-1 is installable and it requires │ └─ python 3.12.* , which can be installed; └─ tensorflow is not installable because there are no viable options ├─ tensorflow [0.12.1|1.0.0|...|1.9.0] would require │ └─ python [3.5* |3.5.* |>=3.5,<3.6.0a0 ], which conflicts with any installable versions previously reported; ├─ tensorflow [1.10.0|1.13.1|...|1.9.0] would require │ ├─ python >=3.6,<3.7.0a0 , which conflicts with any installable versions previously reported; │ └─ tensorflow-base [1.13.1 py36_4|1.13.1 py36_5|...|1.14.0 py36h9f0ad1d_0], which requires │ └─ python >=3.6,<3.7.0a0 , which conflicts with any installable versions previously reported; ├─ tensorflow [1.13.1|1.14.0|...|2.9.1] would require │ ├─ python [3.7.* |>=3.7,<3.8.0a0 ], which conflicts with any installable versions previously reported; │ └─ tensorflow-base [1.13.1 py37_7|1.14.0 py37hc8dfbb8_0], which requires │ └─ python >=3.7,<3.8.0a0 , which conflicts with any installable versions previously reported; ├─ tensorflow [1.1.0|1.10.0|...|2.1.0] would require │ └─ python [3.6* |3.6.* ], which conflicts with any installable versions previously reported; ├─ tensorflow [1.7.0|1.7.1|1.8.0] would require │ └─ tensorflow-ba
03-10
<think>嗯,用户在使用Conda安装TensorFlow时遇到了依赖冲突的问题,具体错误是LibMambaUnsatisfiableError,提示tensorflow-gpu-1.15.0需要tensorflow 1.15.0.*,但无法安装。首先,我需要回忆一下Conda的依赖管理机制,以及常见的解决方法。 根据引用[1],这个错误通常是因为包的版本不兼容或者依赖关系无法满足。用户提到的是TensorFlow 1.15.0,这个版本比较旧了,可能对应的Python版本也比较低。比如,TensorFlow 1.x可能只支持Python 3.53.7,而用户当前的Python环境可能更高,导致冲突。所以第一步应该是检查Python版本是否符合要求。 然后,引用[3]提到Conda安装后会有一个base环境,用户可能需要创建一个新的环境来隔离不同项目的依赖。新建环境时指定Python版本可能有助于解决冲突。例如,使用conda create -n tf_env python=3.7,然后安装TensorFlow。 另外,用户可能在用conda-libmamba-solver时遇到问题,如引用[2]中的错误。这时候可能需要切换回原来的conda solver,或者更新condamamba到最新版本,确保兼容性。 如果直接安装失败,可能需要手动指定版本,比如安装tensorflow-gpu=1.15.0时同时指定对应的Python版本。或者尝试使用pip安装,因为有时PyPI的包可能有不同的依赖处理方式,如引用[1]中的例子。 还有一种情况是依赖链中的其他包不兼容,比如CUDA版本是否匹配。TensorFlow 1.15.0需要特定版本的CUDAcuDNN,用户需要确认系统是否安装了正确的版本。如果没有安装,可能需要通过conda安装对应的cudatoolkitcudnn。 另外,用户是否在正确的渠道(比如conda-forge)查找包?有时候添加conda-forge渠道可以找到更多更新的包或兼容的版本组合。 总结步骤应该是:1. 创建新环境指定Python版本;2. 尝试安装TensorFlow并处理依赖;3. 切换solver或使用pip;4. 检查CUDA/cuDNN版本;5. 清理更新conda环境。如果问题依旧,可能需要更详细的版本调整或寻找替代包。</think>### 分步解决方案 #### 1. **明确依赖关系冲突原因** 错误`LibMambaUnsatisfiableError`表明当前环境中的Python版本或依赖包与TensorFlow的版本不兼容。例如,TensorFlow 1.15.0仅支持Python 3.5-3.7[^1],而若当前环境使用Python 3.8+则会导致冲突。 #### 2. **创建独立虚拟环境** 通过新建环境隔离依赖,避免与已有包冲突: ```bash conda create -n tf_env python=3.7 # 指定兼容的Python版本 conda activate tf_env ``` #### 3. **尝试安装TensorFlow** 使用Conda或pip安装指定版本: ```bash conda install tensorflow-gpu=1.15.0 # 若失败,尝试以下命令 pip install tensorflow-gpu==1.15.0 ``` 若仍报错,可能需要附加依赖: ```bash conda install cudatoolkit=10.0 # TensorFlow 1.15.0需CUDA 10.0 conda install cudnn=7.6 # 对应cuDNN版本 ``` #### 4. **切换Conda的依赖解析器** 若使用`conda-libmamba-solver`报错(如引用[2]),切换回默认解析器: ```bash conda config --set solver classic ``` #### 5. **清理缓存并更新工具** 确保CondaMamba为最新版本: ```bash conda clean --all # 清理缓存 conda update conda conda update mamba ``` #### 6. **替代方案** 若仍无法解决,考虑使用更高版本的TensorFlow(如2.x)或Docker镜像。 --- ### 相关问题 1. **如何检查Conda环境中已安装Python版本?** - 使用`conda list`查看当前环境所有包,或`python --version`直接获取版本信息[^3]。 2. **如何修复CUDA与TensorFlow版本不匹配的问题?** - 参考[TensorFlow官方文档](https://www.tensorflow.org/install/source#gpu)匹配CUDA、cuDNNTensorFlow版本。 3. **Conda虚拟环境与系统Python冲突时如何处理?** - 通过`conda config --set auto_activate_base false`禁止自动激活base环境,避免全局路径干扰。 --- ### 引用说明 : TensorFlow 1.15.0的依赖限制可能导致Python版本冲突。 [^2]: 切换Conda解析器可规避`libmamba`的兼容性问题。 [^3]: 虚拟环境能有效隔离Python版本依赖包。 [^4]: 清理缓存更新工具是解决安装问题的通用方法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值