线性代数-Python-05:矩阵的逆+LU分解

本文详细描述了矩阵逆的求解方法(包括高斯消元),以及初等矩阵和LU分解的Python实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 矩阵的逆

在这里插入图片描述
在这里插入图片描述

1.1 求解矩阵的逆

def inv(A):

    if A.row_num() != A.col_num():
        return None

    n = A.row_num()
    
    """矩阵A+单位矩阵"""
    ls = LinearSystem(A, Matrix.identity(n))
    
    """对线性系统进行高斯消元,如果没有解,返回none"""
    if not ls.gauss_jordan_elimination():
        return None
        
	"""高斯消元有解的话,把线性系统的右部分取出,重新构成矩阵,得到矩阵的逆"""
    invA = [[row[i] for i in range(n, 2*n)] for row in ls.Ab]
    
    return Matrix(invA)

在这里插入图片描述

2 初等矩阵

在这里插入图片描述
在这里插入图片描述

2.1 初等矩阵和可逆性

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 矩阵的LU分解

在这里插入图片描述

3.1 LU分解的实现

from .Matrix import Matrix
from .Vector import Vector
from ._globals import is_zero


def lu(matrix):

    assert matrix.row_num() == matrix.col_num(), "matrix must be a square matrix"

    n = matrix.row_num() 
    
	"""A是原矩阵的副本"""
    A = [matrix.row_vector(i) for i in range(n)]
    
	"""初始化L,使对角线元素为1"""
    L = [[1.0 if i == j else 0.0 for i in range(n)] for j in range(n)]

    for i in range(n):
        """看A[i][i]位置是否可以是主元"""
        if is_zero(A[i][i]):
            return None, None
        else: """将主元以下的j位置变为0"""
            for j in range(i + 1, n):
                p = A[j][i] / A[i][i] """求加减的系数"""
                A[j] = A[j] - p * A[i] """将第j行的位置经过加减运算变成0"""
                L[j][i] = p """将L矩阵相应位置变成相应变换的值"""

    return Matrix(L), Matrix([A[i].underlying_list() for i in range(n)])

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大大枫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值