题目:输入一个字符串,打印出该字符串中字符的所有排列。例如输入字符串abc,则输出由字符a、b、c所能排列出来的所有字符串abc、acb、bac、bca、cab和cba。 分析:这是一道很好的考查对递归理解的编程题,因此在过去一年中频繁出现在各大公司的面试、笔试题中。 我们以三个字符abc为例来分析一下求字符串排列的过程。首先我们固定第一个字符a,求后面两个字符bc的排列。当两个字符bc的排列求好之后,我们把第一个字符a和后面的b交换,得到bac,接着我们固定第一个字符b,求后面两个字符ac的排列。现在是把c放到第一位置的时候了。记住前面我们已经把原先的第一个字符a和后面的b做了交换,为了保证这次c仍然是和原先处在第一位置的a交换,我们在拿c和第一个字符交换之前,先要把b和a交换回来。在交换b和a之后,再拿c和处在第一位置的a进行交换,得到cba。我们再次固定第一个字符c,求后面两个字符b、a的排列。 既然我们已经知道怎么求三个字符的排列,那么固定第一个字符之后求后面两个字符的排列,就是典型的递归思路了。 基于前面的分析,我们可以得到如下的参考代码: void Permutation(char* pStr, char* pBegin); / // Get the permutation of a string, // for example, input string abc, its permutation is // abc acb bac bca cba cab / void Permutation(char* pStr) { Permutation(pStr, pStr); } / // Print the permutation of a string, // Input: pStr - input string // pBegin - points to the begin char of string // which we want to permutate in this recursion / void Permutation(char* pStr, char* pBegin) { if(!pStr || !pBegin) return; // if pBegin points to the end of string, // this round of permutation is finished, // print the permuted string if(*pBegin == '/0') { printf("%s/n", pStr); } // otherwise, permute string else { for(char* pCh = pBegin; *pCh != '/0'; ++ pCh) { // swap pCh and pBegin char temp = *pCh; *pCh = *pBegin; *pBegin = temp; Permutation(pStr, pBegin + 1); // restore pCh and pBegin temp = *pCh; *pCh = *pBegin; *pBegin = temp; } } } 扩展1:如果不是求字符的所有排列,而是求字符的所有组合,应该怎么办呢?当输入的字符串中含有相同的字符串时,相同的字符交换位置是不同的排列,但是同一个组合。举个例子,如果输入aaa,那么它的排列是6个aaa,但对应的组合只有一个。 扩展2:输入一个含有8个数字的数组,判断有没有可能把这8个数字分别放到正方体的8个顶点上,使得正方体上三组相对的面上的4个顶点的和相等。 |