Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Given S = "rabbbit"
, T = "rabbit"
, return 3
.
Do it in O(n2) time and O(n) memory.
O(n2) memory is also acceptable if you do not know how to optimize memory.
else res[i][j] = res[i][j - 1]
当i=j时,res[i][j]等于,第i个字符对应到第j个字符后,匹配字符串的数量 加上 第i个字符对应到1~j-1的某个字符后,匹配字符串的数量。
例子中的匹配结果如图:
0 r a b b b i t
0 1 1 1 1 1 1 1 1
r 0 1 1 1 1 1 1 1
a 0 0 1 1 1 1 1 1
b 0 0 0 1 2 3 3 3
b 0 0 0 0 1 3 3 3
i 0 0 0 0 0 0 3 3
t 0 0 0 0 0 0 0 3
public class Solution {
/**
* @param S, T: Two string.
* @return: Count the number of distinct subsequences
*/
public int numDistinct(String S, String T) {
int[][] res = new int[T.length() + 1][S.length() + 1];
//if s[i] = t[j], res[i][j] = res[i][j - 1] + res[i - 1][j - 1]
//else res[i][j] = res[i][j - 1]
int lengthS = S.length(), lengthT = T.length();
//"" equals to all string
for(int i = 0; i <= lengthS; i++) res[0][i] = 1;
for(int i = 1; i <= lengthT; i++) {
for(int j = i; j <= lengthS; j++) {
if(S.charAt(j - 1) == T.charAt(i - 1)) {
res[i][j] = res[i][j - 1] + res[i - 1][j - 1];
} else {
res[i][j] = res[i][j - 1];
}
}
}
return res[lengthT][lengthS];
}
}