有将近一个月没打卡了。一直在忙学校里的事情,和一些感情。现在没有包袱了,认真地好好学习吧!
1.Combination Sum
重点在于去重:如何保证[2,2,3]和[3,2,2]的不重复出现?用一个index start去避免反复查找。
class Solution {
private:
vector<vector<int>> res;
vector<int> tmp;
void backtracking(vector<int>& candidates, int target, int sum, int start){
if(sum == target){
res.push_back(vector<int>(tmp));
return;
}else if(sum > target){
return;
}
for(int i = start; i < candidates.size(); ++i){
tmp.push_back(candidates[i]);
sum += candidates[i];
backtracking(candidates, target, sum, i);
sum -= candidates[i];
tmp.pop_back();
}
}
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
backtracking(candidates, target, 0, 0);
return res;
}
};
这题要进行树层去重。定义used数组来实现(关键判断在 used[i-1] == false).
class Solution {
private:
vector<vector<int>> res;
vector<int> tmp;
void backtracking(vector<int>& candidates, int target, vector<bool> used, int sum, int start){
if(sum == target){
res.push_back(tmp);
return;
}else if(sum > target){
return;
}
int i = start;
for(; i < candidates.size() && sum + candidates[i] <= target; ++i){
if(i > 0 && candidates[i] == candidates[i-1] && used[i-1] == false) continue;
used[i] = true;
sum += candidates[i];
tmp.push_back(candidates[i]);
backtracking(candidates, target, used, sum, i+1);
tmp.pop_back();
sum -= candidates[i];
used[i] = false;
}
}
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<bool> used;
for(int i = 0; i < candidates.size(); ++i){
used.push_back(false);
}
backtracking(candidates, target, used, 0, 0);
return res;
}
};
3.Palindrome Partitioning
还挺有难度的。结构是要
“aab” 分出 “a”, “aa”, “aab”。“a"再分出"a”, “ab”, etc.
每次传进参数的时候如何修改?答案是改变原string
卡哥给出的做法是,
backtracking(const string &s, int start) 用一个start变量去进行切割,循环便是
for(int i = start; i < ...) 之后截取[start, i]的字串,进行一步步“切割”。
class Solution {
private:
vector<vector<string>> res;
vector<string> tmp;
void backtracking(string s){
if(s.length() == 0){
res.push_back(tmp);
return;
}
int len = s.length();
string tmp2 = "";
for(int i = 0; i < len; ++i){
string toAdd = string(1, s[i]);
tmp2 += toAdd;
if(isPan(tmp2)){
tmp.push_back(tmp2);
backtracking(s.substr(tmp2.length()));
tmp.pop_back();
}
}
}
bool isPan(string s){
int len = s.length();
for(int i = 0, j = len-1; i < len/2; ++i, --j){
if(s[i] != s[j]) return false;
}
return true;
}
public:
vector<vector<string>> partition(string s) {
backtracking(s);
return res;
}
};
文章介绍了如何利用回溯算法解决CombinationSum和CombinationSumII问题,关注点在于去重策略,如使用indexstart和used数组。同时,还讨论了具有挑战性的PalindromePartitioning问题,通过修改原字符串进行递归切割来找出所有回文子序列。
635

被折叠的 条评论
为什么被折叠?



