YOLOv11改进 | Neck篇 | 利用ASF-YOLO改进yolov11特征融合层助力yolov11有效涨点(适用于实例分割和目标检测)

一、本文介绍

本文给大家带来的最新改进机制是ASF-YOLO,其是特别设计用于细胞实例分割。这个模型通过结合空间和尺度特征,提高了在处理细胞图像时的准确性和速度。在实验中,ASF-YOLO在2018年数据科学竞赛数据集上取得了卓越的分割准确性和速度,达到了0.91的box mAP(平均精度),0.887的mask mAP,以及47.3 FPS的推理速度,效果非常的好,这个结构本来是用于分割的,我将其移植到了目标检测的模型上,所以其可以适用于分割和目标检测,当然其它的领域也可以用但是对于分割的同学效果是最好的,目标检测领域也有一定涨点效果,同时欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值