YOLOv11改进 | Neck篇 | Slim-Neck替换特征融合层实现超级涨点 (又轻量又涨点, 含二次创新)

一、本文介绍

本文给大家带来的最新改进机制是Slim-neck提出的Neck部分Slim-neck是一种设计用于优化卷积神经网络中neck部分的结构。在我们YOLOv11中,neck是连接主干网络(backbone)和头部网络(head)的部分,负责特征融合和处理,以便提高检测的准确性和效率。亲测在小目标检测和大尺度目标检测的数据集上都有大幅度的涨点效果(mAP直接涨了大概有0.04左右同时本文对Slim-Neck的框架原理进行了详细的分析,不光让大家会添加到自己的模型在写论文的时候也能够有一定的参照,最后本文会手把手教你添加Slim-Neck模块到网络结构中

  专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备


目录

一、本文介绍

二、Slim-neck原理

2.1  Slim-neck的基本原理

2.2 GSConv的引入

2.3 模块元素

三、 Slim-neck的完整代码

四、手把手教你添加Slim-neck模块 

4.1 修改一

4.2 步骤二

4.3 步骤三 

### YOLOv11 Slim Neck Model Overview The YOLOv11 Slim Neck model represents an advanced iteration within the family of You Only Look Once object detection models. This particular variant focuses on optimizing performance while reducing computational overhead through a streamlined architecture design. #### Architecture Design In designing the Slim Neck version, developers aimed at enhancing efficiency without compromising accuracy significantly. The key architectural changes include: - **Slimmed Feature Extractor**: By adopting lightweight convolutional layers inspired from MobileNetV2's bottleneck structure[^2], this allows for faster computation times. - **Efficient Neck Module**: Introducing a more compact feature fusion mechanism that integrates multi-scale context information effectively but with fewer parameters compared to traditional designs. - **Optimized Detection Head**: Streamlining output layers responsible for bounding box prediction and class probability estimation ensures minimal resource usage during inference stages. ```python import torch.nn as nn class YoloV11SlimNeck(nn.Module): def __init__(self, num_classes=80): super(YoloV11SlimNeck, self).__init__() # Lightweight backbone based on modified Mobilenet V2 self.backbone = ModifiedMobileNetV2() # Efficient neck module combining features across scales self.neck = MultiScaleFusionModule() # Optimized head layer producing final predictions self.head = PredictionHead(num_classes) def forward(self, x): feats = self.backbone(x) fused_feats = self.neck(feats) outputs = self.head(fused_feats) return outputs ``` #### Implementation Details For practical deployment considerations: - Utilization of ReLU6 activation function throughout most parts of the network due to its robustness when paired with low precision arithmetic operations. - Adoption of batch normalization techniques alongside dropout mechanisms during training phases helps improve generalizability and prevents overfitting issues commonly encountered in deep learning tasks. - Kernel size remains consistent at \(3 \times 3\), aligning with contemporary standards observed in modern neural networks.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值