YOLOv11改进 | Conv篇 |手把手教你添加动态蛇形卷积Dynamic Snake Convolution (辅助C3k2进行特征提取)

  一、本文介绍

动态蛇形卷积的灵感来源于对管状结构的特殊性的观察和理解,在分割拓扑管状结构、血管和道路等类型的管状结构时,任务的复杂性增加,因为这些结构的局部结构可能非常细长和迂回,而整体形态也可能多变。
因此为了应对这个挑战,作者研究团队注意到了管状结构的特殊性,并提出了动态蛇形卷积(Dynamic Snake Convolution)这个方法。动态蛇形卷积通过自适应地聚焦于细长和迂回的局部结构,准确地捕捉管状结构的特征。这种卷积方法的核心思想是,通过动态形状的卷积核来增强感知能力,针对管状结构的特征提取进行优化。

总之动态蛇形卷积是一种针对管状结构分割任务的创新方法,在许多模型上添加针对一些数据集都能够有效的涨点其具有重要性和广泛的应用领域。

  专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备


目录

一、本文介绍

二、动态蛇形卷积背景和原理

三、动态蛇形卷积的优势

四、实验和结果

4.1 数据集

4.2 实验

4.3 实验结果

4.4 有效性展示

五、核心代码

六、需要改动代码的地方

6.1 修改一

6.2 修改二 

6.3 修改三 

6.4 修改四 

七、DSConv的yaml文件和运行记录

7.1 DSConv的yaml文件

7.2 DSConv的训练过程截图 

### 将注意力机制与 Deformable-LKA 集成至 YOLOv8 #### 1. 注意力机制简介 注意力机制允许模型聚焦于输入数据的关键部分,从而提高特定任务的表现。对于目标检测而言,这有助于更好地捕捉物体边界和细节。 #### 2. Deformable-LKA 组件解析 Deformable-LKA 是一种结合了大卷积核的感受野优势与可变形卷积灵活性的新型注意力模块[^3]。它能够动态调整卷积操作的位置偏移量,使得网络可以灵活应对不同尺度的目标对象及其变化形态。 #### 3. 在 YOLOv8 中集成 Deformable-LKA 为了在 YOLOv8 上实现该功能,需按照如下方式修改架构: - **替换原有层**:将原有的标准卷积层替换成带有 Deformable-LKA 的版本。 - **位置选择**: - 对于 C2f 层次结构中的某些中间特征图应用此机制; - 或者是在最终预测头部之前加入额外的一层或多层含有 Deformable-LKA 的组件。 ```python from yolov8.models import * import torch.nn as nn class DeformConvWithLKA(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=7, stride=1, padding=3): super().__init__() self.offset_conv = nn.Conv2d(in_channels, 2 * (kernel_size**2), kernel_size=kernel_size, stride=stride, padding=padding) self.deform_conv = ModulatedDeformConvPack( in_channels=in_channels, out_channels=out_channels, kernel_size=(kernel_size,kernel_size), stride=stride, padding=padding, dilation=1, deform_groups=1) def forward(self,x): offset=self.offset_conv(x).clamp(-max_offset,max_offset) output=self.deform_conv(x,offset) return output ``` 上述代码展示了如何创建一个基于 PyTorch 的 `ModulatedDeformConvPack` 来构建具有 LKA 功能的新类 `DeformConvWithLKA`[^4]。 #### 4. 训练配置调整 当引入新的组件后,可能还需要相应地调整超参数设置,比如学习率、批量大小等,以确保最佳收敛性和泛化能力。 #### 5. 性能评估 经过这些改动之后,应该使用合适的指标(如 mAP)来衡量改进前后系统的差异,并通过对比实验验证所做更改的有效性[^1]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值