一、本文介绍
本文给大家带来的改进机制是一种新的卷积层,称为WTConv(小波卷积层),它利用小波变换(WT)来解决卷积神经网络(CNN)在实现大感受野时遇到的过度参数化问题。WTConv的主要目的是通过对输入数据的不同频率带进行处理,使CNN能够更有效地捕捉局部和全局特征,WTConv成功解决了CNN在感受野扩展中的参数膨胀问题,提供了一种更为高效、鲁棒且易于集成的卷积层解决方案,我将其用于二次创新YOLOv8中的C2f机制可以减少百分之二十的参数量和计算量,达到一个可观的轻量化作用(这种小波Conv对于目前的创新角度来说是非常流行的)。

目录
二、原理介绍
官方论文地址:官方论文地址点击此处即可跳转
官方代码地址:官方代码地址点击此处即可跳转

这篇名为《用于大感受野的小波卷积》的文章提出了一种新的卷积层,称为WTConv(小波卷积层),它利用小波变换(
订阅专栏 解锁全文
5776

被折叠的 条评论
为什么被折叠?



