YOLOv8改进 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)

本文介绍了如何在YOLOv8中使用Haar小波的下采样HWD机制,以替代传统的卷积下采样。这种方法能降低模型参数和计算量,例如在V8n上应用后,参数量降至270W,GFLOPs减至7.5。文章详细阐述了HWD的原理,并提供了逐步的代码修改指南,以及训练过程的yaml文件和截图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)在小波变换中,Haar小波作为一种基本的小波函数,用于将图像数据分解为多个层次的近似和细节信息,这是一种多分辨率的分析方法。我将其用在YOLOv8上其明显降低参数和GFLOPs在V8n上使用该机制后参数量为270W计算量GFLOPs为7.5,欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

  欢迎大家订阅我的专栏一起学习YOLO!  

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制 

目录

一、本文介绍

二、原理介绍

三、核心代码 

四、手把手教你添加HWD机制

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、HWD的yaml文件和运行记录

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值