YOLOv5改进 | 主干篇 | 多种轻量化卷积优化PP-HGNetV2改进主干(全网独家创新)

本文详细介绍了如何改进YOLOv5的主干网络,采用HGNetV2并结合轻量化卷积进行优化。作者分析了HGNetV2的网络结构,讲解了其层次化处理数据的优势,并提供了具体的代码修改步骤,实验证明优化后的网络在精度和轻量化方面表现出色。

 一、本文介绍

Hello,大家好,上一篇博客我们讲了利用HGNetV2去替换YOLOv5的主干,经过结构的研究我们可以发现在HGNetV2的网络中有大量的卷积存在,所以我们可以用一种更加轻量化的卷积去优化HGNetV2从而达到更加轻量化的效果(亲测优化后的HGNetV2网络比正常HGNetV2精度更高轻量化效果更好,非常适合轻量化的读者),同时HGNetV2的网络结构目前还没有推出论文,所以其理论知识在网络上也是非常的少,我也是根据网络结构图进行了分析,给大家进行讲解网络结构原理

欢迎大家订阅我的专栏一起学习YOLO! 

轻量化效果:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

 一、本文介绍

二、HGNetV2原理讲解

2.1 HGNetV2的网络结构讲解 

2.2 轻量化卷积

三、HGNetV2的代码

四、手把手教你添加HGNetV2 

4.1 手把手教你添加HGNetV2 

4.1.1 修改一

4.1.2 修改二

4. 2 HGNetV2-l的yaml文件(此为对比试验版本)

4.2 HGNetV2-x的yaml文件

五、运行成功记录

六、本文总结


二、HGNetV2原理讲解

 

论文地址:RT-DETR论文地址

本文代码来源:HGNetV2的代码来源


2.1 HGNetV2的网络结构讲解 

PP-HGNet 骨干网络的整体结构如下: 

其中,PP-HGNet是由多个HG-Block组成,HG-Block的细节如下:

上面的图表是PP-HGNet神经网络架构的概览,下面我对其中的每一个模块进行分析:

1. Stem层:这是网络的初始预处理层,通常包含卷积层,开始从原始输入数据中提取特征。

2. HG(层次图)块:这些块是网络的核心组件,设计用于以层次化的方式处理数据。每个

评论 11
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值