YOLOv5改进 | 主干篇 | MobileNetV2轻量化网络助力FPS提高(附代码+修改教程)

本文详细介绍了如何使用MobileNetV2改进YOLOv5,以提高FPS并优化目标检测性能。MobileNetV2通过反转残差结构和线性瓶颈层设计,实现了轻量化网络,适合移动和嵌入式设备。文中提供了核心代码、修改教程及yaml配置文件,帮助读者理解并实现这一改进。

一、本文介绍

本文给大家带来的改进机制是MobileNetV2,其是专为移动和嵌入式视觉应用设计的轻量化网络结构。其在MobilNetV1的基础上采用反转残差结构和线性瓶颈层。这种结构通过轻量级的深度卷积和线性卷积过滤特征,同时去除狭窄层中的非线性,以维持表征能力。MobileNetV2在性能上和精度上都要比V1版本强很多,其在多种应用(如对象检测、细粒度分类、面部属性识别和大规模地理定位)中都展现了一定的有效性。

适用检测目标:轻量化网络结构适合非常轻量化的读者,同时具有涨点效果

推荐指数:⭐⭐⭐⭐

 专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

一、本文介绍

二、MobileNetV2的框架原理

2.1 MobileNetV2的基本原理

2.1.1 反转残差结构 

2.1.2 线性瓶颈层

2.1.3 SSDLite框架 

三、MobileNetV2的核心代码

 四、手把手教你添加MobileNetV2网络结构

修改一

修改二

修改三

修改四

修改五

修改五 

修改六 

修改七

五、MobileNetV2的yaml文件

六、成功运行记录 

七、本文总结


二、MobileNetV2的框架原理

官方论文地址:官方论文地址

官方代码地址:官方代码地址


2.1 Mobil

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值