Mini-Batch Gradient Descent

本文详细介绍了Mini-Batch梯度下降算法,这是一种介于批量梯度下降和随机梯度下降之间的方法。通过使用部分样本进行迭代更新,该算法在计算效率与收敛速度之间取得了较好的平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mini-Batch Gradient Descent

1. What is Mini-Batch Gradient Descent?

Mini-Batch Gradient Descent is an algorithm between the Batch Gradient Descent and Stochastic Gradient Descent. Concretly, this use some(not one or all) examples(M) for each iteration.

2. Compute Effort

The compute time of this algorithm depends on the examples. It not stable, but the worst case is like Batch Gradient Descent: O(N2)

The table below shows the different among these there Gradient Descent

Batch Gradient DescentMini-Batch Gradient DescentStochastic Gradient Descent
use 1 example in each iterationuse some examplesuse all example in each iteration
relative compute loosesomewhat in betweenrelative compute intensive

3. Gradient Descent Formula

For all θi

Jθθi=1mi=1M[hθ(xi)yi](xi)

E.g.,
two parameters θ0,θ1 –> hθ(x)=θ0+θ1x1

For i = 0 :

Jθθ0=1mi=1M[hθ(xi)yi](x0)

For i = 1:

Jθθ1=1mi=1M[hθ(xi)yi](x1)

Note that the datasets need to be shuffled before iteration.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值