按照本系列从头开始使用 Python 学习 CUDA 编程
介绍
GPU(图形处理单元),顾名思义,最初是为计算机图形学开发的。从那时起,它们几乎在每个需要高计算吞吐量的领域都无处不在。这一进步得益于 GPGPU(通用 GPU)接口的发展,这些接口使我们能够对 GPU 进行编程以进行通用计算。这些接口中最常见的是CUDA,其次是OpenCL,最近的是 HIP。
Python 中的 CUDA
CUDA 最初设计为与 C 兼容。后来的版本将其扩展到 C++ 和 Fortran。在 Python 生态系统中,使用 CUDA 的方法之一是通过Numba,这是一个适用于 Python 的即时 (JIT) 编译器,可以针对 GPU(它也针对 CPU,但这超出了我们的范围)。使用 Numba,可以直接用 Python(一个子集)编写内核,Numba 将即时编译代码并运行它。虽然它没有实现完整的 CUDA API,但其支持的功能通常足以获