1 + 1/2 + 1/3 + 1/4 + ...... + 1/n怎么计算?
看到这个问题,我愣住了,好象曾经在什么地方看到过这样的一个问题,当时还看到了解答。可是现在怎么都想不起来了。我只好很不好意思地告诉我的朋友,我不知道该怎么计算。当我回复这条信息的时候,着实有点沮丧,因为这是一个比较经典的算法问题,但是我对这个竟然一无所知。我的基础真的太糟糕了,真的应该重新去学习一下算法知识。
后来,我用Google搜索了一下,期待能够找到解答,可是能够找到的就是:这样的数列称为Harmonic Series。以下摘录一些关于Harmonic Series的信息:
The harmonic series is this:
1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+...
Some infinite series sum to real numbers .These 9 terms sum to 2.829. 100 terms sum to 5.187. 1000 terms sum to 7.4854. And 1,000,000 terms sum to 14.384. Just what does the infinite series add up to? The answer to that is that the sum blows up to infinity. It gets there very slowly, doesn't it? There is actually a simple proof that it sums to infinity:
S=1+(1/2)+(1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+...
Consider this series:
T=1+(1/2)+(1/4+1/4)+(1/8+1/8+1/8+1/8)+(1/16+...
T<S for any finite number of terms.
T=1+1/2+1/2+1/2+... which is infinite for infinitely many terms.
So S must also be infinite.
It turns out that there is a relatively simple estimate of the sum of n terms:
S(n) is approximately ln(n)+.5772156649...
It gets closer, the larger n is. The number .5772156649... is known as Euler's constant.
哪位朋友知道如何解答的,还请不吝赐教了。 //Bow
博客介绍了调和级数,展示不同项数的调和级数和,如9项和为2.829等。证明了调和级数和趋于无穷,通过构造小于调和级数的级数T,T和为无穷,得出调和级数和也为无穷。还给出n项和的近似公式S(n)约为ln(n)+欧拉常数。
5万+

被折叠的 条评论
为什么被折叠?



