#include "tmr.h"
#include <stdbool.h> // 解决 bool 类型未定义
#include <string.h>
#define TIMEOUT_VALUE 10000 // 10秒(ms)
volatile uint32_t inactivityTimer = TIMEOUT_VALUE;
volatile uint8_t activityFlag = 0;
volatile uint32_t idle_counter = 0;
// 在main.c文件顶部添加外部声明
extern UART_HandleTypeDef huart1;
extern SPI_HandleTypeDef hspi1;
volatile uint8_t led_cnt=0; //设定led闪烁的次数
volatile uint16_t led_open_time=0; //设定led每次亮的时间
volatile uint16_t led_close_time=0; //设定led每次灭的时间
volatile uint16_t led_time=0;
volatile uint16_t led_time_mx=0;
static bool is_running = false; // 静态变量,仅在当前文件可见
//TIM_HandleTypeDef htim1;
// 修正后的LED_Control函数
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim->Instance == TIM1) {
Variable_Cnt_In_Timer(); // 调用时间计数函数
Key_Scan();
idle_counter++; // 每100ms增加一次
}
}
void LED_Control(uint8_t cnt, uint16_t open_time, uint16_t close_time, bool start_state)
{
if (start_state) {
is_running = true;
led_cnt = cnt;
led_open_time = open_time;
led_close_time = close_time;
led_time = 1; // 启动计数
led_time_mx = open_time; // 初始亮灯时间
LED1_ON(); // 初始状态点亮
} else {
is_running = false;
led_cnt = 0; // 关键修复:清空计数
led_time = 0; // 停止计时
LED1_OFF(); // 立即熄灭LED
}
}
// 时间计数函数 (1ms中断调用)
void Variable_Cnt_In_Timer(void)
{
// LED控制逻辑
if(is_running && led_time >= 1)
{
if(++led_time >= led_time_mx)
{
if(led_cnt > 0) led_cnt--;
if(led_cnt == 0) {
LED1_OFF(); // 闪烁结束熄灭LED
led_time = 0; // 停止计数
} else {
LED1_TOGGLE(); // 切换LED状态
led_time = 1; // 重置计数器
// 切换亮/灭时间阈值
led_time_mx = (led_time_mx == led_open_time) ?
led_close_time : led_open_time;
}
}
}
}
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {
if (GPIO_Pin == GPIO_PIN_7) {
HAL_Delay(20); // 20ms消抖
if(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_7)) {
activityFlag = 1;
}
}
}
// 唤醒后初始化
void Post_Wakeup_Init(void) {
__HAL_RCC_PWR_CLK_ENABLE(); // 恢复电源时钟
__HAL_RCC_GPIOA_CLK_ENABLE(); // 开启GPIOA时钟
__HAL_RCC_GPIOF_CLK_ENABLE(); // 开启GPIOF时钟
SystemCoreClockUpdate();
HAL_ResumeTick();
}
// PB7唤醒配置(增加内部上拉)
void Configure_Wakeup_Pin(void) {
__HAL_RCC_GPIOB_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {
.Pin = GPIO_PIN_7,
.Mode = GPIO_MODE_EVT_RISING,
.Pull = GPIO_PULLUP,
.Speed = GPIO_SPEED_FREQ_LOW
};
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PIN1);
}
void Enter_Stop_Mode(void) {
// 关闭外设
HAL_UART_DeInit(&huart1);
HAL_SPI_DeInit(&hspi1);
// 禁用外设时钟
__HAL_RCC_SPI1_CLK_DISABLE();
__HAL_RCC_USART1_CLK_DISABLE();
// 配置唤醒源
Configure_Wakeup_Pin();
// 关闭所有外设时钟(除必要唤醒源)
HAL_SuspendTick(); // 挂起SysTick,避免唤醒后立即进入中断
// 配置PB7为唤醒源(已在MX_GPIO_Init中配置)
HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PIN1); // PB7对应WAKEUP_PIN1
// 进入停止模式(保留RAM内容,低功耗稳压器开启)
HAL_SuspendTick();
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
// 唤醒后初始化(系统时钟恢复为HSI 16MHz)
SystemClock_Config(); // 重新配置系统时钟
// MX_GPIO_Init();
// MX_USART1_UART_Init();
// MX_SPI1_Init();
HAL_ResumeTick(); // 恢复SysTick
}
void ECU_Sleep(void)
{
if(activityFlag) {
activityFlag = 0;
inactivityTimer = TIMEOUT_VALUE;
}
if(HAL_GetTick() % 100 == 0) { // 每100ms检测
if(inactivityTimer > 0) inactivityTimer--;
else Enter_Stop_Mode();
}
__WFI(); // 等待中断降低功耗
}
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdbool.h> // 解决 bool 类型未定义
#include <string.h>
#include "usart.h"
#include "rf433.h"
#include "ymodem.h"
#include "tmr.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
uint16_t readBuffer = 0;
// uint8_t rx_buffer[RX_BUFFER_SIZE] = {0}; // 全局接收缓冲区
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CRC_HandleTypeDef hcrc;
SPI_HandleTypeDef hspi1;
TIM_HandleTypeDef htim1;
UART_HandleTypeDef huart1;
static uint16_t receivedCode = 0; // static限制作用域
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM1_Init(void);
static void MX_CRC_Init(void);
/* USER CODE BEGIN PFP */
// main.c 顶部
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_SPI1_Init();
MX_USART1_UART_Init();
MX_TIM1_Init();
MX_CRC_Init();
MX_FATFS_Init();
// VerifyFlashData() ;
/* USER CODE BEGIN 2 */
// MX_TIM17_Init();
LED1_ON(); LED2_ON();
LED_Control(4, 1000, 1000, 1);
FLASH_ReadData(FLASH_USER_START_ADDR, &readBuffer, 1);
HAL_UART_Receive_IT(&huart1, rx_buffer, RX_BUFFER_SIZE); // 启动接收中断,长度为 RX_BUFFER_SIZE
// LED_Control(2,80,15,0);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
Key_Scan(); // 按键扫描
if (flag_rf_new_frame) {
Process_Data(receivedCode);
flag_rf_new_frame = false;
// idle_counter = 0; // 检测到活动,重置空闲计数器
}
// 检查空闲超时
if (idle_counter >= IDLE_TIMEOUT) {
idle_counter = 0;
HAL_TIM_Base_Stop_IT(&htim1); // 停止定时器
Enter_Stop_Mode(); // 进入停止模式
HAL_TIM_Base_Start_IT(&htim1); // 唤醒后重启定时器
}
HAL_Delay(10);
; // 降低CPU负载
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1;
PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE;
hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_4BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 7;
hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_SlaveConfigTypeDef sSlaveConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 72;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 9;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET;
sSlaveConfig.InputTrigger = TIM_TS_ITR0;
if (HAL_TIM_SlaveConfigSynchro(&htim1, &sSlaveConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 0;
if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
HAL_NVIC_SetPriority(TIM1_CC_IRQn, 0, 2);
HAL_NVIC_EnableIRQ(TIM1_CC_IRQn);
HAL_TIM_Base_Start_IT(&htim1);
/* USER CODE END TIM1_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
// 在MX_USART1_UART_Init函数中添加
// HAL_UART_Receive_IT(&huart1, rx_analyse_buf, 1); // 启动接收中断
HAL_NVIC_SetPriority(USART1_IRQn, 0, 0); // 优先级设为最高
HAL_NVIC_EnableIRQ(USART1_IRQn);
/* USER CODE END USART1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3|GPIO_PIN_10|GPIO_PIN_11, GPIO_PIN_RESET);
/*Configure GPIO pins : PA1 PA2 */
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PA3 PA10 PA11 */
GPIO_InitStruct.Pin = GPIO_PIN_3|GPIO_PIN_10|GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : PA4 */
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
// 配置PB7为唤醒引脚(上升沿触发)
GPIO_InitStruct.Pin = GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
// 设置中断优先级并开启PB7中断
// HAL_NVIC_SetPriority(EXTI9_5_IRQn, 0, 0); // PB7对应EXTI线7,属于EXTI9_5中断组
// HAL_NVIC_EnableIRQ(EXTI9_5_IRQn);
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
#include "rf433.h"
#include "usart.h"
#include <stdbool.h> // 解决 bool 类型未定义
#include <string.h>
#include "main.h"
#include "tmr.h"
#include "eeprom.h"
#define FLASH_TARGET_SECTOR FLASH_SECTOR_11 // 使用扇区11(根据实际芯片调整)
#define FLASH_TARGET_ADDR 0x0800F000 // 扇区起始地址
// 按键状态定义
typedef enum {
KEY_RELEASED,
KEY_FIRST_PRESS,
KEY_LONG_PRESS,
KEY_SHORT_PRESS
} KeyState;
// 全局变量
volatile uint32_t keyPressStartTime = 0;
volatile uint32_t lastShortPressTime = 0;
volatile uint8_t shortPressCount = 0;
volatile uint32_t dataReceiveTime = 0;
volatile uint8_t dataMatchCount = 0;
uint16_t receivedData[32];
uint16_t flashStoredData = 0;
KeyState keyState = KEY_RELEASED;
// 按键扫描状态机
void Key_Scan(void) {
uint32_t currentTime = HAL_GetTick();
if (HAL_GPIO_ReadPin(KEY_GPIO_PORT, KEY_PIN) == KEY_PRESSED_STATE) {
switch (keyState) {
case KEY_RELEASED:
keyPressStartTime = currentTime;
keyState = KEY_FIRST_PRESS;
break;
case KEY_FIRST_PRESS:
if ((currentTime - keyPressStartTime) >= 5000) {
keyState = KEY_LONG_PRESS;
dataMatchCount = 0; // 启动长按计数
LED_Control(4, 3000, 3000, 1);
}
break;
default:
break;
}
} else {
if (keyState == KEY_FIRST_PRESS) {
// 短按处理
if ((currentTime - lastShortPressTime) <= 3000) {
shortPressCount++;
} else {
shortPressCount = 1; // 重置计数
}
lastShortPressTime = currentTime;
keyState = KEY_SHORT_PRESS;
// 3秒内3次短按擦除
if (shortPressCount >= 3) {
FLASH_ErasePage(FLASH_USER_START_ADDR);
shortPressCount = 0;
}
}
keyState = KEY_RELEASED;
}
}
// 数据接收处理
void Process_Data(uint16_t rx_analyse_buf) {
// 长按期间数据验证
if (keyState == KEY_LONG_PRESS) {
if (dataMatchCount == 0 || rx_analyse_buf == receivedData[5]) {
receivedData[dataMatchCount] = rx_analyse_buf;
if (++dataMatchCount >= 1) {
// 写入Flash
WriteRxDataToFlash();
// 重置状态
keyState = KEY_RELEASED;
LED_Control(4, 3000, 3000, 1);
}
} else {
dataMatchCount = 0; // 数据不匹配重置
}
}
// 数据匹配检测
if (rx_analyse_buf == flashStoredData) {
HAL_GPIO_WritePin(OUTPUT_GPIO_PORT, OUTPUT_PIN, GPIO_PIN_SET);
LED_Control(4, 3000, 3000, 1);
} else {
HAL_GPIO_WritePin(OUTPUT_GPIO_PORT, OUTPUT_PIN, GPIO_PIN_RESET);
// LED_Control(4, 3000, 3000, 1);
}
}
void WriteRxDataToFlash(void) {
HAL_StatusTypeDef status;
uint32_t flash_addr = FLASH_TARGET_ADDR;
// 1. 解锁FLASH
HAL_FLASH_Unlock();
// 2. 擦除扇区(擦除前必须解锁)
FLASH_EraseInitTypeDef erase_config = {
.TypeErase = FLASH_TYPEERASE_PAGES,
.PageAddress = FLASH_TARGET_ADDR,
.NbPages = 1 // 只擦除1个扇区
};
uint32_t sector_error;
status = HAL_FLASHEx_Erase(&erase_config, §or_error);
if (status != HAL_OK) {
// 错误处理:擦除失败
Error_Handler();
}
// 3. 写入数据(按半字写入)
for (int i = 0; i < sizeof(rx_analyse_buf); i += 2) {
// 合并两个字节为半字
uint16_t data = (uint16_t)rx_analyse_buf[i] |
((uint16_t)rx_analyse_buf[i + 1] << 8);
status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD,
flash_addr,
data);
if (status != HAL_OK) {
// 错误处理:写入失败
break;
}
flash_addr += 2; // 地址增加2字节
}
// 4. 锁定FLASH
HAL_FLASH_Lock();
LED_Control(6, 3000, 3000, 1);
// 5. 验证写入(可选)
// 添加读取校验逻辑...
}
void VerifyFlashData(void) {
uint8_t read_buffer[sizeof(rx_analyse_buf)];
uint32_t addr = FLASH_TARGET_ADDR;
for (int i = 0; i < sizeof(read_buffer); i++) {
read_buffer[i] = *(volatile uint8_t*)addr;
addr++;
}
// 比较数据
if (memcmp(rx_analyse_buf, read_buffer, sizeof(rx_analyse_buf)) != 0) {
// 校验失败处理
Error_Handler();
LED_Control(6, 3000, 3000, 1);
}
}
#include "eeprom.h"
#include "stm32f0xx_hal.h"
// 擦除Flash页(按地址自动计算页号)
HAL_StatusTypeDef FLASH_ErasePage(uint32_t PageAddress) {
FLASH_EraseInitTypeDef EraseInitStruct;
uint32_t PageError = 0;
// 计算页号(从0开始)
uint32_t PageNumber = (PageAddress - FLASH_BASE) / FLASH_PAGE_SIZE;
EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;
EraseInitStruct.PageAddress = PageAddress;
EraseInitStruct.NbPages = 1; // 只擦除1页
HAL_FLASH_Unlock(); // 解锁Flash[^1]
// 清除所有标志位
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR);
// 执行擦除
HAL_StatusTypeDef status = HAL_FLASHEx_Erase(&EraseInitStruct, &PageError);
HAL_FLASH_Lock(); // 重新锁定
return status;
}
// 写入数据(半字/16位为单位)
HAL_StatusTypeDef FLASH_WriteData(uint32_t WriteAddr, uint16_t *data, uint16_t len) {
if (WriteAddr < FLASH_USER_START_ADDR ||
WriteAddr + len*2 > FLASH_USER_START_ADDR + FLASH_PAGE_SIZE) {
return HAL_ERROR; // 地址越界检查[^4]
}
HAL_FLASH_Unlock();
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_WRPERR | FLASH_FLAG_PGERR);
for (uint16_t i = 0; i < len; i++) {
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD,
WriteAddr + i*2,
data[i]) != HAL_OK) {
HAL_FLASH_Lock();
return HAL_ERROR; // 写入失败
}
}
HAL_FLASH_Lock();
return HAL_OK;
}
// 读取数据(半字/16位为单位)
void FLASH_ReadData(uint32_t ReadAddr, uint16_t *buffer, uint16_t len) {
for (uint16_t i = 0; i < len; i++) {
buffer[i] = *(__IO uint16_t*)(ReadAddr + i*2); // 直接地址访问[^1]
}
}
//// 示例:写入并读取配置参数
//void SaveAndReadConfig(void) {
// uint16_t configData[4] = {0x1234, 0x5678, 0x9ABC, 0xDEF0};
// uint16_t readBuffer[4];
//
// // 1. 擦除最后一页
// if (FLASH_ErasePage(FLASH_USER_START_ADDR) != HAL_OK) {
// // 错误处理
// }
//
// // 2. 写入数据
// if (FLASH_WriteData(FLASH_USER_START_ADDR, configData, 4) != HAL_OK) {
// // 错误处理
// }
//
// // 3. 读取验证
// FLASH_ReadData(FLASH_USER_START_ADDR, readBuffer, 4);
//
// // 验证数据 (readBuffer 应与 configData 一致)
//}
我想用stm32F030x.6的芯片,要求是433接收数据给单片机,当按键按下到5秒以内,然后单片机接收的数据,存到flash里面,433发送数据的时候与flash里面的数据进行匹配,如果说是一样的话,输出一个高电平,单片机没有工作时,10秒之后进行休眠,433的数据,发给单片机时进行唤醒并进行匹配数据.