晕--as3

博客指出AS3.0不支持多重继承和多态,而这些特性在Java中能发挥很好的作用,体现了两种编程语言在特性支持上的差异。
as3.0并不支持多重继承,和多态,这些在java都是很好的用处的。 
我想把我之前的结果都变成word形式生成,以及我做了太多结果,那些回归相关,我已经搞了。我把最后结果发给你,请你帮我在每个相关或回归前写一个表头,表明这是什么。 ___ ____ ____ ____ ____ © /__ / ____/ / ____/ 17.0 ___/ / /___/ / /___/ MP—Parallel Edition Statistics and Data Science Copyright 1985-2021 StataCorp LLC StataCorp 4905 Lakeway Drive College Station, Texas 77845 USA 800-STATA-PC https://www.stata.com 979-696-4600 stata@stata.com Stata license: Single-user 2-core perpetual Serial number: 501806366048 Licensed to: aaa bbb Notes: 1. Unicode is supported; see help unicode_advice. 2. More than 2 billion observations are allowed; see help obs_advice. 3. Maximum number of variables is set to 5,000; see help set_maxvar. . do "C:\Users\lenovo\AppData\Local\Temp\STD924_000000.tmp" . * =========================================================================== . * 验证 AI 投入是否具有滞后正向效应(终极修复版,确保一遍过) . * 作者:AI 助手 | 日期:2025年4月5日 . * =========================================================================== . . * --- 1. 清空内存,设置路径 --- . clear all . cd "D:\Users\lenovo\Desktop" // 修改为你自己的路径 D:\Users\lenovo\Desktop . . * --- 2. 加载主财务数据 --- . use "financial_cleaned.dta", clear . . * 检查是否有 year 变量 . capture confirm variable year . if _rc != 0 { . display as error "❌ 错误:数据中没有 'year' 变量!请检查数据结构" . exit 111 . } . . * --- 3. 检查 ai_annual.dta 是否存在并合并 --- . capture use "ai_annual.dta", clear . if _rc != 0 { . display as error "❌ 错误:无法打开文件 ai_annual.dta,请确认文件存在于桌面且名称正确" . exit 601 . } . keep year ai_mentions . save "ai_temp.dta", replace (file ai_temp.dta not found) file ai_temp.dta saved . . * 回到主数据 . use "financial_cleaned.dta", clear . merge m:1 year using "ai_temp.dta", nogen Result Number of obs ----------------------------------------- Not matched 0 Matched 39 ----------------------------------------- . . * --- 4. 检查 rd_annual.dta 是否存在并合并 --- . capture use "rd_annual.dta", clear . if _rc != 0 { . display as error "❌ 错误:无法打开文件 rd_annual.dta,请确认文件存在于桌面且名称正确" . exit 601 . } . keep year rd_expense . save "rd_temp.dta", replace (file rd_temp.dta not found) file rd_temp.dta saved . . * 回到主数据 . use "financial_cleaned.dta", clear . merge m:1 year using "ai_temp.dta", nogen Result Number of obs ----------------------------------------- Not matched 0 Matched 39 ----------------------------------------- . merge m:1 year using "rd_temp.dta", nogen Result Number of obs ----------------------------------------- Not matched 0 Matched 39 ----------------------------------------- . . * 删除临时文件 . erase "ai_temp.dta" . erase "rd_temp.dta" . . * --- 5. 按年聚合:将季度数据转为年度平均值 --- . collapse (mean) roa roe debt_ratio ln_revenue /// // 财务指标取均值 > (first) ai_mentions rd_expense, by(year) // AI 和 R&D 取当年值 . . * --- 6. 排序 --- . sort year . . * --- 7. 生成下一年 ROA --- . gen next_roa = roa[_n+1] if year[_n+1] == year + 1 (1 missing value generated) . label var next_roa "Next Year's ROA" . . * --- 8. 描述性统计 --- . summarize roa next_roa ai_mentions rd_expense ln_revenue debt_ratio Variable | Obs Mean Std. dev. Min Max -------------+--------------------------------------------------------- roa | 10 .0949047 .026076 .0620595 .1218738 next_roa | 9 .0919443 .0258139 .0620595 .1218738 ai_mentions | 10 52.9 56.58906 4 172 rd_expense | 10 2.74e+09 5.35e+08 1.73e+09 3.44e+09 ln_revenue | 10 23.12686 .3110618 22.51417 23.41911 -------------+--------------------------------------------------------- debt_ratio | 10 .0949394 .0146112 .0629635 .1099355 . . * --- 9. 相关性分析 --- . correlate next_roa ai_mentions rd_expense ln_revenue debt_ratio (obs=9) | next_roa ai_men~s rd_exp~e ln_rev~e debt_r~o -------------+--------------------------------------------- next_roa | 1.0000 ai_mentions | -0.7280 1.0000 rd_expense | 0.8877 -0.5749 1.0000 ln_revenue | -0.8232 0.6087 -0.5741 1.0000 debt_ratio | 0.4942 -0.7731 0.4171 -0.2729 1.0000 . . * --- 10. 回归分析 --- . regress next_roa c.ai_mentions c.rd_expense c.ln_revenue c.debt_ratio i.year, robust note: 2021.year omitted because of collinearity. note: 2022.year omitted because of collinearity. note: 2023.year omitted because of collinearity. note: 2024.year omitted because of collinearity. Linear regression Number of obs = 9 F(0, 0) = . Prob > F = . R-squared = 1.0000 Root MSE = 0 ------------------------------------------------------------------------------ | Robust next_roa | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- ai_mentions | 3.34e-06 . . . . . rd_expense | 1.73e-11 . . . . . ln_revenue | -.0532505 . . . . . debt_ratio | -.0980677 . . . . . | year | 2017 | .0035353 . . . . . 2018 | .0201439 . . . . . 2019 | .0230021 . . . . . 2020 | .0161762 . . . . . 2021 | 0 (omitted) 2022 | 0 (omitted) 2023 | 0 (omitted) 2024 | 0 (omitted) | _cons | 1.278377 . . . . . ------------------------------------------------------------------------------ . . * --- 11. 输出结果到 Word --- . * 如果未安装 outreg2,请先运行:ssc install outreg2, replace . capture which outreg2 . if _rc == 111 { . display as text "⚠️ 未安装 outreg2,正在尝试安装..." . ssc install outreg2, replace . } . outreg2 using ai_lag_effect.doc, replace ctitle("Future ROA") auto(2) /// > title("Table 1: Effect of AI Mentions on Next-Year ROA") ai_lag_effect.doc dir : seeout . . * --- 12. 绘制散点图:AI 提及 vs 下一年 ROA --- . twoway (scatter next_roa ai_mentions, mlabel(year) mcolor(red) msymbol(circle)) /// > (lfit next_roa ai_mentions, lcolor(blue)), /// > title("AI Mentions Predict Future ROA?") /// > subtitle("Current AI Mentions vs Next Year's ROA") /// > xtitle("AI Mentions in Current Year") /// > ytitle("ROA in Next Year") /// > legend(off) /// > name(ai_vs_future_roa, replace) . graph export "ai_vs_future_roa.png", width(900) height(600) replace (file ai_vs_future_roa.png not found) file ai_vs_future_roa.png saved as PNG format . . * --- 13. 绘制趋势图:ROA 与 AI 提及随时间变化 --- . preserve . twoway (line roa year, lcolor(blue) lwidth(medium)) /// > (line ai_mentions year, lcolor(red) yaxis(2) lwidth(medium)), /// > title("Trend Over Time") /// > xtitle("Year") /// > ytitle("ROA", axis(1)) /// > ytitle("AI Mentions", axis(2)) /// > xlabel(2016(1)2025) /// > legend(order(1 "ROA" 2 "AI Mentions")) /// > name(roa_ai_trend, replace) . graph export "roa_ai_trend.png", width(900) height(600) replace (file roa_ai_trend.png not found) file roa_ai_trend.png saved as PNG format . restore . . * --- 14. 显示数据预览 --- . list year roa next_roa ai_mentions in 1/12, sepby(year) noobs observation numbers out of range r(198); end of do-file r(198); . do "C:\Users\lenovo\AppData\Local\Temp\STD924_000000.tmp" . * =========================================================================== . * 验证 AI 投入是否具有滞后正向效应(终极修复版,确保一遍过) . * 作者:AI 助手 | 日期:2025年4月5日 . * =========================================================================== . . * --- 1. 清空内存,设置路径 --- . clear all . cd "D:\Users\lenovo\Desktop" // 修改为你自己的路径 D:\Users\lenovo\Desktop . . * --- 2. 加载主财务数据 --- . use "financial_cleaned.dta", clear . . * 检查是否有 year 变量 . capture confirm variable year . if _rc != 0 { . display as error "❌ 错误:数据中没有 'year' 变量!请检查数据结构" . exit 111 . } . . * --- 3. 检查 ai_annual.dta 是否存在并合并 --- . capture use "ai_annual.dta", clear . if _rc != 0 { . display as error "❌ 错误:无法打开文件 ai_annual.dta,请确认文件存在于桌面且名称正确" . exit 601 . } . keep year ai_mentions . save "ai_temp.dta", replace (file ai_temp.dta not found) file ai_temp.dta saved . . * 回到主数据 . use "financial_cleaned.dta", clear . merge m:1 year using "ai_temp.dta", nogen Result Number of obs ----------------------------------------- Not matched 0 Matched 39 ----------------------------------------- . . * --- 4. 检查 rd_annual.dta 是否存在并合并 --- . capture use "rd_annual.dta", clear . if _rc != 0 { . display as error "❌ 错误:无法打开文件 rd_annual.dta,请确认文件存在于桌面且名称正确" . exit 601 . } . keep year rd_expense . save "rd_temp.dta", replace (file rd_temp.dta not found) file rd_temp.dta saved . . * 回到主数据 . use "financial_cleaned.dta", clear . merge m:1 year using "ai_temp.dta", nogen Result Number of obs ----------------------------------------- Not matched 0 Matched 39 ----------------------------------------- . merge m:1 year using "rd_temp.dta", nogen Result Number of obs ----------------------------------------- Not matched 0 Matched 39 ----------------------------------------- . . * 删除临时文件 . erase "ai_temp.dta" . erase "rd_temp.dta" . . * --- 5. 按年聚合:将季度数据转为年度平均值 --- . collapse (mean) roa roe debt_ratio ln_revenue /// // 财务指标取均值 > (first) ai_mentions rd_expense, by(year) // AI 和 R&D 取当年值 . . * --- 6. 排序 --- . sort year . . * --- 7. 生成下一年 ROA --- . gen next_roa = roa[_n+1] if year[_n+1] == year + 1 (1 missing value generated) . label var next_roa "Next Year's ROA" . . * --- 8. 描述性统计 --- . summarize roa next_roa ai_mentions rd_expense ln_revenue debt_ratio Variable | Obs Mean Std. dev. Min Max -------------+--------------------------------------------------------- roa | 10 .0949047 .026076 .0620595 .1218738 next_roa | 9 .0919443 .0258139 .0620595 .1218738 ai_mentions | 10 52.9 56.58906 4 172 rd_expense | 10 2.74e+09 5.35e+08 1.73e+09 3.44e+09 ln_revenue | 10 23.12686 .3110618 22.51417 23.41911 -------------+--------------------------------------------------------- debt_ratio | 10 .0949394 .0146112 .0629635 .1099355 . . * --- 9. 相关性分析 --- . correlate next_roa ai_mentions rd_expense ln_revenue debt_ratio (obs=9) | next_roa ai_men~s rd_exp~e ln_rev~e debt_r~o -------------+--------------------------------------------- next_roa | 1.0000 ai_mentions | -0.7280 1.0000 rd_expense | 0.8877 -0.5749 1.0000 ln_revenue | -0.8232 0.6087 -0.5741 1.0000 debt_ratio | 0.4942 -0.7731 0.4171 -0.2729 1.0000 . . * --- 10. 回归分析(修正版:避免过拟合)--- . * 不再使用 i.year,改用时间趋势或仅控制协变量 . . * 方法一:简单稳健回归(推荐小样本) . regress next_roa c.ai_mentions c.rd_expense c.ln_revenue c.debt_ratio, robust Linear regression Number of obs = 9 F(3, 4) = . Prob > F = . R-squared = 0.9505 Root MSE = .00812 ------------------------------------------------------------------------------ | Robust next_roa | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- ai_mentions | -.0000538 .000124 -0.43 0.687 -.000398 .0002905 rd_expense | 2.87e-11 7.17e-12 4.00 0.016 8.79e-12 4.86e-11 ln_revenue | -.0346581 .0132604 -2.61 0.059 -.0714749 .0021587 debt_ratio | .1340701 .1677207 0.80 0.469 -.3315972 .5997375 _cons | .8053355 .2946586 2.73 0.052 -.0127679 1.623439 ------------------------------------------------------------------------------ . . * 方法二:加入时间趋势(可选) . * gen time_trend = year - 2016 . * regress next_roa c.ai_mentions c.rd_expense c.ln_revenue c.debt_ratio c.time_trend, robust . . * --- 11. 输出结果到 Word --- . outreg2 using ai_lag_effect.doc, replace ctitle("Future ROA") auto(2) /// > title("Table 1: Effect of AI Mentions on Next-Year ROA") ai_lag_effect.doc dir : seeout . . * --- 12. 绘制散点图 --- . twoway (scatter next_roa ai_mentions, mlabel(year) mcolor(red) msymbol(circle)) /// > (lfit next_roa ai_mentions, lcolor(blue)), /// > title("AI Mentions Predict Future ROA?") /// > subtitle("Current AI Mentions vs Next Year's ROA") /// > xtitle("AI Mentions in Current Year") /// > ytitle("ROA in Next Year") /// > legend(off) /// > name(ai_vs_future_roa, replace) . graph export "ai_vs_future_roa.png", width(900) height(600) replace file ai_vs_future_roa.png saved as PNG format . . * --- 13. 绘制趋势图 --- . preserve . twoway (line roa year, lcolor(blue) lwidth(medium)) /// > (line ai_mentions year, lcolor(red) yaxis(2) lwidth(medium)), /// > title("Trend Over Time") /// > xtitle("Year") /// > ytitle("ROA", axis(1)) /// > ytitle("AI Mentions", axis(2)) /// > xlabel(2016(1)2025) /// > legend(order(1 "ROA" 2 "AI Mentions")) /// > name(roa_ai_trend, replace) . graph export "roa_ai_trend.png", width(900) height(600) replace file roa_ai_trend.png saved as PNG format . restore . . * --- 14. 显示数据预览(修正范围)--- . list year roa next_roa ai_mentions in 1/10, sepby(year) noobs +--------------------------------------+ | year roa next_roa ai_men~s | |--------------------------------------| | 2016 .121548 .1202005 4 | |--------------------------------------| | 2017 .1202 .1179928 5 | |--------------------------------------| | 2018 .117993 .1218738 13 | |--------------------------------------| | 2019 .121874 .1115533 16 | |--------------------------------------| | 2020 .111553 .0837875 20 | |--------------------------------------| | 2021 .083788 .0620595 32 | |--------------------------------------| | 2022 .062059 .0654863 61 | |--------------------------------------| | 2023 .065486 .0806397 89 | |--------------------------------------| | 2024 .08064 .063905 117 | |--------------------------------------| | 2025 .063905 . 172 | +--------------------------------------+ . . * --- 15. 成功提示 --- . display as text "✅ 分析完成!" ✅ 分析完成! . display as text "📊 回归结果已保存至:ai_lag_effect.doc" 📊 回归结果已保存至:ai_lag_effect.doc . display as text "🖼️ 图表已保存至桌面:" 🖼️ 图表已保存至桌面: . display as text " • ai_vs_future_roa.png" • ai_vs_future_roa.png . display as text " • roa_ai_trend.png" • roa_ai_trend.png . end of do-file .
11-12
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值