[Leetcode] Jump Game / Jump Game II

跳跃游戏算法解析
本文介绍了一种名为Jump Game的问题解决方案,包括两个子问题:一是判断能否到达数组末尾,二是求解达到末尾所需的最少跳跃次数。通过示例说明了算法的工作原理,并提供了C++实现代码。
Jump GameMar 25 '126923 / 16241

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

For example:
A = [2,3,1,1,4], return true.

A = [3,2,1,0,4], return false.

 

Jump Game IIMar 17 '126747 / 18561

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.

For example:
Given array A = [2,3,1,1,4]

The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)

 

class Solution {
public:
    bool canJump(int A[], int n) {
        int last = 0, t;
        for (int i = 0; i < n; i++) {
            if (i <= last) {
                t = i + A[i];
                if (last < t) last = t;
                if (last >= n-1) return true;
            } else return false;
        }
        return last >= n-1;
    }
};


class Solution {
public:
    int jump(int A[], int n) {
        int last = 0, step = 0, cur = 0, t;
        while (last < n-1) {
            int nextlast = last;
            for (int i = cur; i <= last; i++) {
                t = i + A[i];
                if (t > nextlast) nextlast = t;
            }
            step++;
            cur = last + 1;
            last = nextlast;
        }
        return step;
    }
};

 

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
你提供的代码是 **LeetCode 第55题:跳跃游戏(Jump Game)** 的标准贪心算法解法。该算法通过维护一个变量 `rightmost` 来记录当前能够到达的最远位置,从而判断是否可以跳到最后一个下标。 --- ## ✅ 代码解析与完整 VS2022 可运行版本 以下是适合在 **Visual Studio 2022 (VS2022)** 中运行的完整代码版本,包含 `vector`、主函数和测试用例。 ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; class Solution { public: bool canJump(vector<int>& nums) { int n = nums.size(); int rightmost = 0; for (int i = 0; i < n; ++i) { if (i <= rightmost) { // 如果当前位置i是可以到达的 rightmost = max(rightmost, i + nums[i]); // 更新最远可达位置 if (rightmost >= n - 1) { return true; // 已能到达或超过终点 } } } return false; // 循环结束仍未到达终点 } }; // 主函数测试 int main() { Solution sol; vector<int> nums; // 测试用例 1 nums = {2, 3, 1, 1, 4}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n能否跳到最后?" << (sol.canJump(nums) ? "true" : "false") << endl << endl; // 测试用例 2 nums = {3, 2, 1, 0, 4}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n能否跳到最后?" << (sol.canJump(nums) ? "true" : "false") << endl << endl; // 测试用例 3 nums = {0}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n能否跳到最后?" << (sol.canJump(nums) ? "true" : "false") << endl << endl; // 测试用例 4 nums = {1, 0, 2}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n能否跳到最后?" << (sol.canJump(nums) ? "true" : "false") << endl << endl; return 0; } ``` --- ## ✅ 示例输出 ``` 输入数组: 2 3 1 1 4 能否跳到最后?true 输入数组: 3 2 1 0 4 能否跳到最后?false 输入数组: 0 能否跳到最后?true 输入数组: 1 0 2 能否跳到最后?false ``` --- ## ✅ 算法逻辑详解 ### ✅ 问题背景 给定一个非负整数数组 `nums`,你最初位于数组的第一个下标。每个下标 `i` 对应一个非负整数 `nums[i]`,表示你可以跳跃的最大步数。你的任务是判断是否可以从第一个下标跳到最后一个下标。 ### ✅ 解法思路:贪心算法(Greedy) #### 核心思想: - 维护一个变量 `rightmost`,表示当前能够到达的最远下标。 - 遍历数组: - 如果当前位置 `i` 在 `rightmost` 范围内,说明可以到达; - 更新 `rightmost` 为 `max(rightmost, i + nums[i])`; - 如果 `rightmost >= n - 1`,说明可以到达终点,直接返回 `true`; - 如果遍历结束后仍未到达终点,返回 `false`。 --- ## ✅ 时间与空间复杂度 | 类型 | 复杂度 | 说明 | |------|--------|------| | 时间复杂度 | O(n) | 只遍历一次数组 | | 空间复杂度 | O(1) | 只使用常数级额外空间 | --- ## ✅ 常见问题排查(VS2022) 1. **编译错误** - 确保包含 `<vector>` 和 `<algorithm>` - 使用 `using namespace std;` 或加上 `std::` 前缀 2. **运行时错误** - 注意空数组处理(题目保证数组长度 ≥ 1) - 确保访问 `nums[i]` 不越界 3. **逻辑错误** - 初始 `rightmost` 为 0 是关键 - `if (i <= rightmost)` 是防止不可达点的判断条件 --- ## ✅ 对比其他解法 | 解法 | 时间复杂度 | 空间复杂度 | 特点 | |------|------------|------------|------| | 贪心算法(当前方法) | O(n) | O(1) | 最优解,推荐 | | 动态规划(从后往前) | O(n²) | O(n) | 思路清晰但效率低 | | BFS / DFS | O(n²) | O(n) | 可以解决问题,但不推荐 | | 递归+记忆化搜索 | O(n²) | O(n) | 适合拓展思路 | ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值