很早很早以前就想在嵌入式系统上实现动态模块加载的功能了,期间走了些弯路,直到最近,才完整地在嵌入式系统上实现动态模块加载。
=== 动态模块加载的好处 ===
动态模块加载的好处很多,例如,当你升级一个系统的时候,可以只升级一个模块,而不必升级整个系统。你可以把不同的模块放在不同的介质上,并实施不同等级的保护,例如BIOS部分进行写保护。
有些系统允许用户进行二次开发,这个时候几乎一定是需要动态加载功能的,因为你不希望用户需要链接整个系统才能够进行二次开发,而且你可能希望支持多个用户模块,彼此不相互依赖,彼此不干扰。
=== Background ===
一般来说,C的编译器编译出来的代码,由以下几个重要的部分:
.code: 代码段
.data: 有初值的数据段
.bss: 无初值的数据段
通常还有.rodata,是只读的数据段,在嵌入式系统中经常可以合并到.code段中.
注: .code, .data 和.bss这些段的命名不同的编译器可能会有不同。
由于不同段在实际运行的时候可能会被加载到不同的介质,例如.code和.rodata可以放在NOR FLASH上而.data,.bss放入RAM中,或者要满足所谓的scatter loading,因此编译器会努力使段可以自由移动。
但是要做到这一点,并不容易。
在代码段中运行的指令,要获取数据段中的数据,方法有:
a) 通过当前PC值+偏移量
b) 通过绝对地址
c) 通过中间寄存器,寄存器里面:
c.1) 存放绝对地址
c.2) 偏移量
方法b通常只在CISC中存在,许多RISC机器由于指令长度受限制,并不存在方法b。
因此,从这里可以看出,要做到各段可以自由移动,有几种方法:
1) 保留一个寄存器专门用于指示数据段的起始地址
2) 运行前修改指令
3) 保留一小块数据段和代码段的相对位置不变,此片数据段作为指向实际数据段的入口表, 运行前修改此表。
方法1和方法3通常会结合起来一起用,动态链
=== 动态模块加载的好处 ===
动态模块加载的好处很多,例如,当你升级一个系统的时候,可以只升级一个模块,而不必升级整个系统。你可以把不同的模块放在不同的介质上,并实施不同等级的保护,例如BIOS部分进行写保护。
有些系统允许用户进行二次开发,这个时候几乎一定是需要动态加载功能的,因为你不希望用户需要链接整个系统才能够进行二次开发,而且你可能希望支持多个用户模块,彼此不相互依赖,彼此不干扰。
=== Background ===
一般来说,C的编译器编译出来的代码,由以下几个重要的部分:
.code: 代码段
.data: 有初值的数据段
.bss: 无初值的数据段
通常还有.rodata,是只读的数据段,在嵌入式系统中经常可以合并到.code段中.
注: .code, .data 和.bss这些段的命名不同的编译器可能会有不同。
由于不同段在实际运行的时候可能会被加载到不同的介质,例如.code和.rodata可以放在NOR FLASH上而.data,.bss放入RAM中,或者要满足所谓的scatter loading,因此编译器会努力使段可以自由移动。
但是要做到这一点,并不容易。
在代码段中运行的指令,要获取数据段中的数据,方法有:
a) 通过当前PC值+偏移量
b) 通过绝对地址
c) 通过中间寄存器,寄存器里面:
c.1) 存放绝对地址
c.2) 偏移量
方法b通常只在CISC中存在,许多RISC机器由于指令长度受限制,并不存在方法b。
因此,从这里可以看出,要做到各段可以自由移动,有几种方法:
1) 保留一个寄存器专门用于指示数据段的起始地址
2) 运行前修改指令
3) 保留一小块数据段和代码段的相对位置不变,此片数据段作为指向实际数据段的入口表, 运行前修改此表。
方法1和方法3通常会结合起来一起用,动态链