Stockbroker Grapevine(最短路 + Dijkstra + 邻接表 + 优先队列)

Stockbroker Grapevine
Time Limit: 1000MS  Memory Limit: 10000K
Total Submissions: 24988  Accepted: 13771

Description

Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers to give your employer the tactical edge in the stock market. For maximum effect, you have to spread the rumours in the fastest possible way. 

Unfortunately for you, stockbrokers only trust information coming from their "Trusted sources" This means you have to take into account the structure of their contacts when starting a rumour. It takes a certain amount of time for a specific stockbroker to pass the rumour on to each of his colleagues. Your task will be to write a program that tells you which stockbroker to choose as your starting point for the rumour, as well as the time it will take for the rumour to spread throughout the stockbroker community. This duration is measured as the time needed for the last person to receive the information.

Input

Your program will input data for different sets of stockbrokers. Each set starts with a line with the number of stockbrokers. Following this is a line for each stockbroker which contains the number of people who they have contact with, who these people are, and the time taken for them to pass the message to each person. The format of each stockbroker line is as follows: The line starts with the number of contacts (n), followed by n pairs of integers, one pair for each contact. Each pair lists first a number referring to the contact (e.g. a '1' means person number one in the set), followed by the time in minutes taken to pass a message to that person. There are no special punctuation symbols or spacing rules. 

Each person is numbered 1 through to the number of stockbrokers. The time taken to pass the message on will be between 1 and 10 minutes (inclusive), and the number of contacts will range between 0 and one less than the number of stockbrokers. The number of stockbrokers will range from 1 to 100. The input is terminated by a set of stockbrokers containing 0 (zero) people. 

Output

For each set of data, your program must output a single line containing the person who results in the fastest message transmission, and how long before the last person will receive any given message after you give it to this person, measured in integer minutes. 
It is possible that your program will receive a network of connections that excludes some persons, i.e. some people may be unreachable. If your program detects such a broken network, simply output the message "disjoint". Note that the time taken to pass the message from person A to person B is not necessarily the same as the time taken to pass it from B to A, if such transmission is possible at all.

Sample Input

3
2 2 4 3 5
2 1 2 3 6
2 1 2 2 2
5
3 4 4 2 8 5 3
1 5 8
4 1 6 4 10 2 7 5 2
0
2 2 5 1 5
0

Sample Output

3 2
3 10

 

    题意:

    给出 N(1 ~ 100),说明有 N 个节点,后按顺序 1 到 N 给出该节点与其他节点的关系状况,每条关系首先给出数字 M,代表 i 节点有 M 个出度,后给出 入节点 和 时间。比如 2 2 3 3 5,说明 i 节点出发有两个节点,分别是 2 和 3,到 2 的时间为 3 ,到 3 的时间为 5 。选择一个节点同时发出信息,使发送的时间最短。输出这个节点和花费的总时间,如果找不到则输出“disjoint”。

 

    思路:

    最短路。Dijkstra + 邻接表 + 优先队列。对于每个节点都求一次单源最短路后,找到需要花费最长的时间,如果这个节点有某一点不能达到,说明这个节点不能作为起点。如果都不能作为起点则输出 disjoint 。

 

    AC:

#include <cstdio>
#include <vector>
#include <queue>
#include <utility>
#include <iostream>
#include <string.h>
#define MAX 10000
#define INF 99999999
using namespace std;

typedef pair<int,int> pii;

int v[MAX],fir[105],next[MAX],w[MAX];
int d[105],vis[105];
int n,ind;

void add_edge(int f,int t,int val) {
    v[ind] = t;
    w[ind] = val;
    next[ind] = fir[f];
    fir[f] = ind;
    ind++;
}

int Dijkstra(int sta) {
    int max_time = -1;
    for(int i = 1;i <= n;i++) d[i] = INF;
    memset(vis,0,sizeof(vis));
    d[sta] = 0;
    priority_queue<pii,vector<pii>,greater<pii> > q;
    q.push(make_pair(d[sta],sta));
    while(!q.empty()) {
        pii k = q.top();q.pop();
        int x = k.second;
        if(vis[x]) continue;
        vis[x] = 1;
        for(int e = fir[x];e != -1;e = next[e]) {
            int y = v[e];
            if(d[y] > d[x] + w[e]) {
               d[y] = d[x] + w[e];
               q.push(make_pair(d[y],y));
            }
        }
    }

    for(int i = 1;i <= n;i++) {
        if(i == sta) continue;
        if(d[i] == INF) return -1;
        if(d[i] > max_time) max_time = d[i];
    }

    return max_time;
}

int main() {
    //freopen("test.in","r",stdin);
    int max_time,max_idx;
    while(~scanf("%d",&n) && n) {
        ind = 0;
        max_time = INF;
        memset(fir,-1,sizeof(fir));
        for(int i = 1;i <= n;i++) {
            int num;
            scanf("%d",&num);
            while(num--) {
                int a,val;
                scanf("%d%d",&a,&val);
                add_edge(i,a,val);
            }
        }

        for(int i = 1;i <= n;i++) {
            int time = Dijkstra(i);
            if(time != -1 && time < max_time) {
                max_time = time;
                max_idx = i;
            }
        }

        if(max_time == INF) puts("disjoint");
        else    printf("%d %d\n",max_idx,max_time);
    }
    return 0;
}

 

 

标题基于SpringBoot+Vue的社区便民服务平台研究AI更换标题第1章引言介绍社区便民服务平台的研究背景、意义,以及基于SpringBoot+Vue技术的研究现状和创新点。1.1研究背景与意义分析社区便民服务的重要性,以及SpringBoot+Vue技术在平台建设中的优势。1.2国内外研究现状概述国内外在社区便民服务平台方面的发展现状。1.3研究方法与创新点阐述本文采用的研究方法和在SpringBoot+Vue技术应用上的创新之处。第2章相关理论介绍SpringBoot和Vue的相关理论基础,以及它们在社区便民服务平台中的应用。2.1SpringBoot技术概述解释SpringBoot的基本概念、特点及其在便民服务平台中的应用价值。2.2Vue技术概述阐述Vue的核心思想、技术特性及其在前端界面开发中的优势。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue如何有效整合,以提升社区便民服务平台的性能。第3章平台需求分析与设计分析社区便民服务平台的需求,并基于SpringBoot+Vue技术进行平台设计。3.1需求分析明确平台需满足的功能需求和性能需求。3.2架构设计设计平台的整体架构,包括前后端分离、模块化设计等思想。3.3数据库设计根据平台需求设计合理的数据库结构,包括数据表、字段等。第4章平台实现与关键技术详细阐述基于SpringBoot+Vue的社区便民服务平台的实现过程及关键技术。4.1后端服务实现使用SpringBoot实现后端服务,包括用户管理、服务管理等核心功能。4.2前端界面实现采用Vue技术实现前端界面,提供友好的用户交互体验。4.3前后端交互技术探讨前后端数据交互的方式,如RESTful API、WebSocket等。第5章平台测试与优化对实现的社区便民服务平台进行全面测试,并针对问题进行优化。5.1测试环境与工具介绍测试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值