Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isValidBST(TreeNode root) {
ArrayList<Integer> arrayList = new ArrayList<Integer>();
arrayList.add(null);
return solve(root, arrayList);
}
private boolean solve(TreeNode root, ArrayList<Integer> arrayList) {
if (root == null) {
return true;
}
boolean left = solve(root.left, arrayList);
if (arrayList.get(arrayList.size()-1) != null && root.val<=arrayList.get(arrayList.size()-1)) {
return false;
}
arrayList.add(root.val);
boolean right = solve(root.right, arrayList);
return left && right;
}
}