You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
public class Solution {
public int climbStairs(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2) {
return n;
}
int res = 2;
int pre = 1;
int tmp = 0;
for (int i = 3; i <= n; i++) {
tmp = res;
res = res + pre;
pre = tmp;
}
return res;
}
}
public class Solution {
public int climbStairs(int n) {
if (n < 1) {
return 0;
}
if (n == 1 || n == 2) {
return n;
}
int[][] base = {{1, 1}, {1, 0}};
int[][] res = help(base, n - 2);
return 2 * res[0][0] + res[1][0];
}
private int[][] help(int[][] m, int p) {
// TODO Auto-generated method stub
int[][] res = new int[m.length][m[0].length];
for (int i = 0; i < res.length; i++) {
res[i][i] = 1;
}
int[][] tmp = m;
for (; p != 0; p >>= 1) {
if ((p & 1) != 0) {
res = help2(res, tmp);
}
tmp = help2(tmp, tmp);
}
return res;
}
private int[][] help2(int[][] m1, int[][] m2) {
// TODO Auto-generated method stub
int[][] res = new int[m1.length][m2[0].length];
for (int i = 0; i < m2[0].length; i++) {
for (int j = 0; j < m1.length; j++) {
for (int k = 0; k < m2.length; k++) {
res[i][j] += m1[i][k] * m2[k][j];
}
}
}
return res;
}
}
本文探讨了经典的爬楼梯问题,提供了两种不同的算法解决方案。一种是通过迭代的方法逐步计算到达楼梯顶部的不同方式的数量;另一种则利用矩阵快速幂的方式进行高效求解。
484

被折叠的 条评论
为什么被折叠?



