Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums toT.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is: [1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
public class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> res = new ArrayList<List<Integer>>();
List<Integer> item = new ArrayList<Integer>();
if (candidates == null || candidates.length==0) {
return res;
}
Arrays.sort(candidates);
boolean[] visited = new boolean[candidates.length];
solve(candidates,target, 0, item ,res, visited);
return res;
}
private void solve(int[] candidates, int target, int start, List<Integer> item,
List<List<Integer>> res, boolean[] visited) {
// TODO Auto-generated method stub
if (target < 0) {
return;
}
if (target == 0) {
res.add(new ArrayList<>(item));
return;
}
for (int j = start; j < candidates.length; j++) {
if (!visited[j]) {
if (j > 0 && candidates[j] == candidates[j-1] && visited[j-1] == false) {
continue;
}
item.add(candidates[j]);
visited[j] = true;
solve(candidates,target-candidates[j], j+1, item ,res, visited);
visited[j] = false;
item.remove(item.size()-1);
}
}
}
}