Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
public class Solution {
public int[] searchRange(int[] nums, int target) {
int[] res = {-1, -1};
if (nums == null || nums.length == 0) {
return res;
}
int start = 0;
int end = nums.length-1;
int pos = 0;
while (start <= end) {
int mid = (start + end) / 2;
pos = mid;
if (target < nums[mid]) {
end = mid - 1;
} else if (target > nums[mid]) {
start = mid + 1;
} else {
res[0] = pos;
res[1] = pos;
break;
}
}
if (nums[pos] != target) {
return res;
}
int newStart = pos;
int newEnd = nums.length-1;
while (newStart <= newEnd) {
int mid = (newStart + newEnd) / 2;
if (target == nums[mid]) {
newStart = mid + 1;
} else {
newEnd = mid - 1;
}
}
res[1] = newEnd;
newStart = 0;
newEnd = pos;
while (newStart <= newEnd) {
int mid = (newStart + newEnd) / 2;
if (target == nums[mid]) {
newEnd = mid - 1;
} else {
newStart = mid + 1;
}
}
res[0] = newStart;
return res;
}
}
本文介绍了一种算法,可在已排序的整数数组中查找给定目标值的起始和结束位置,采用二分查找实现O(log n)的时间复杂度。
3246

被折叠的 条评论
为什么被折叠?



