网络流里的最大权闭合图和最大密度子图还是挺有意思的
方法:s连接正权点,点权赋给边,t连接负权点,点权的绝对值赋给边,原图两点之间的边用inf64正向容量连接,逆向为0.
这样就能把每一个最小割和每一个闭合图一一对应,利用最小割的性质很好证明。然后求出最小割,用所有正权和减去得到最大获利。因为最小割把图分成了两部分,所以最后求最小人数可以用一个贪心,方法是从s出发广度优先搜索,能达到的节点都是需要开除的,这样就能统计出最大获利时的最小人数!
#include<iostream>
#include<vector>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<cmath>
#include<cassert>
#include<cstring>
#include<iomanip>
using namespace std;
#ifdef _WIN32
#define i64 __int64
#define out64 "%I64d\n"
#define in64 "%I64d"
#else
#define i64 long long
#define out64 "%lld\n"
#define in64 "%lld"
#endif
#define FOR(i,a,b) for( int i = (a) ; i <= (b) ; i ++)
#define FF(i,a) for( int i = 0 ; i < (a) ; i ++)
#define FFD(i,a) for( int i = (a)-1 ; i >= 0 ; i --)
#define S64(a) scanf(in64,&a)
#define SS(a) scanf("%d",&a)
#define LL(a) ((a)<<1)
#define RR(a) (((a)<<1)+1)
#define SZ(a) ((int)a.size())
#define PP(n,m,a) puts("---");FF(i,n){FF(j,m)cout << a[i][j] << ' ';puts("");}
#define pb push_back
#define CL(Q) while(!Q.empty())Q.pop()
#define MM(name,what) memset(name,what,sizeof(name))
#define read freopen("in.txt","r",stdin)
#define write freopen("out.txt","w",stdout)
const int inf = 0x3f3f3f3f;
const i64 inf64 = 0x3f3f3f3f3f3f3f3fLL;
const double oo = 10e9;
const double eps = 10e-8;
const double pi = acos(-1.0);
const int maxn=5011;
const int end=5001;
struct zz
{
int from;
int to;
i64 c;
int id;
}zx,tz;
int n,m,tx,ty;
i64 pro,total;
int cost[maxn];
vector<zz>g[maxn];
queue<int>q;
int cen[maxn];
bool vis[maxn];
bool bfs()
{
CL(q);
MM(cen,-1);
q.push(0);
cen[0] = 0;
int now,to;
while(!q.empty())
{
now = q.front();
q.pop();
FF(i,g[now].size())
{
to = g[now][i].to;
if(cen[to] == -1 && g[now][i].c > 0)
{
cen[to] = cen[now] + 1;
q.push(to);
}
}
}
return cen[end] != -1;
}
i64 dfs(i64 flow = inf , int now = 0 )
{
if(now == end)
{
return flow;
}
i64 temp,sum=0;
int to;
FF(i,g[now].size())
{
to = g[now][i].to;
if (g[now][i].c > 0 && flow > sum && cen[to] == cen[now] + 1 )
{
temp = dfs ( min ( flow - sum , g[now][i].c ) , to );
sum += temp;
g[now][i].c -= temp;
g[to][g[now][i].id].c += temp;
}
}
if(!sum) cen[now] = -1;
return sum;
}
void dinic()
{
i64 ans = 0;
while(bfs())
{
ans += dfs();
}
pro = total - ans;
return ;
}
void bfs2()
{
int ans = 0;
CL(q);
MM(vis,false);
vis[0] = true;
q.push(0);
int now,to;
while(!q.empty())
{
now = q.front();
q.pop();
FF(i,g[now].size())
{
to = g[now][i].to;
if(g[now][i].c > 0 && !vis[to] )
{
vis[to] = true;
ans++;
q.push(to);
}
}
}
cout<<ans<<" ";
return ;
}
int main()
{
total = 0;
cin>>n>>m;
FOR(i,1,n)
{
SS(cost[i]);
if(cost[i] > 0)
{
total += cost[i];
}
}
FOR(i,1,m)
{
SS(tx);
SS(ty);
zx.from = tx;
zx.to = ty;
zx.c = inf64;
zx.id = g[ty].size();
g[tx].pb(zx);
swap(zx.from,zx.to);
zx.c = 0;
zx.id = g[tx].size() - 1;
g[zx.from].pb(zx);
}
FOR(i,1,n)
{
if(cost[i]>0)
{
zx.from = 0;
zx.to = i;
zx.c = cost[i];
zx.id = g[i].size();
g[0].pb(zx);
swap(zx.from,zx.to);
zx.c = 0;
zx.id = g[0].size()-1;
g[i].pb(zx);
}
else if(cost[i]<0)
{
zx.from = i;
zx.to = end;
zx.c = -cost[i];
zx.id = g[end].size();
g[i].pb(zx);
swap(zx.from,zx.to);
zx.c = 0;
zx.id = g[i].size() - 1;
g[end].pb(zx);
}
}
dinic();
bfs2();
cout<<pro<<endl;
return 0;
}