Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
最小路径求和的问题,用动态规划来解决。每经过一个点都记录从开始到这个点的最小带权路径。当i = 0 或者j = 0的时候,因为只有一个方向可以走,这时的递推式为grid[i][0] = grid[i - 1][0] + grid[i][0] (j = 0) 和grid[0][j] = grid[0][j - 1] + grid[0][j] ( i = 0)。当i >0 并且j > 0 时,递推式为grid[i][j] = Math.min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j],每次都取一个和最小的路径。代码如下:
Note: You can only move either down or right at any point in time.
最小路径求和的问题,用动态规划来解决。每经过一个点都记录从开始到这个点的最小带权路径。当i = 0 或者j = 0的时候,因为只有一个方向可以走,这时的递推式为grid[i][0] = grid[i - 1][0] + grid[i][0] (j = 0) 和grid[0][j] = grid[0][j - 1] + grid[0][j] ( i = 0)。当i >0 并且j > 0 时,递推式为grid[i][j] = Math.min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j],每次都取一个和最小的路径。代码如下:
public class Solution {
public int minPathSum(int[][] grid) {
if(grid == null || grid.length == 0) return 0;
int m = grid.length;
int n = grid[0].length;
for(int i = 1; i < m; i++)
grid[i][0] = grid[i - 1][0] + grid[i][0];
for(int j = 1; j < n; j++)
grid[0][j] = grid[0][j - 1] + grid[0][j];
for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++) {
grid[i][j] = Math.min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j];
}
return grid[m - 1][n - 1];
}
}
本文介绍了一种使用动态规划解决网格中最小路径求和问题的方法。该算法通过递归公式计算从左上角到右下角的最短路径,允许向右或向下移动。
338

被折叠的 条评论
为什么被折叠?



