
思路:跟之前走方格的题差不多,只是状态转移方程稍微改变一下。dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];。
代码:
public class MinimumPathSum64 {
public static void main(String[] args) {
// int[][] num = { { 1, 3, 1 }, { 1, 5, 1 }, { 4, 2, 1 }};
int[][] num = { { 1, 2,5 }, { 3,2,1 }};
System.out.println(minPathSum(num));
}
public static int minPathSum(int[][] grid) {
int[][] dp = new int[grid.length][grid[0].length];
int sum = 0;
for (int i = 0; i < grid[0].length; i++) {
sum += grid[0][i];
dp[0][i] = sum;
}
sum = 0;
for (int i = 0; i < grid.length; i++) {
sum += grid[i][0];
dp[i][0] = sum;
}
for (int i = 1; i < dp.length; i++) {
for (int j = 1; j < dp[0].length; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[dp.length - 1][dp[0].length - 1];
}
}
输出:
![]()

本文详细解析了寻找矩阵中从左上角到右下角的最小路径和的算法实现。通过动态规划方法,构建状态转移方程dp[i][j]=Math.min(dp[i-1][j],dp[i][j-1])+grid[i][j],并逐步求解得到最终答案。
2979

被折叠的 条评论
为什么被折叠?



