半场雪(二)

讲述了主人公因厌学沉迷网络游戏,最终被学校除名的故事。在春节期间,主人公独自一人在网吧度过,通过游戏寻找自尊与快乐。
第二节

2005年,大年初五,晚间7时许。一家面积挺大,装修普通的网吧。

我仰靠在椅背上,手握鼠标,茫然的在网页间跳转。

我登陆了天堂2,看了下2亿余的金币,又索然的退出了游戏。

今天网吧的人很少,没有人陪我玩游戏。我无事可做,但我却还是要到这家网吧来,坐在这里。不知道为什么,就是想呆在网吧里。虽然已经找不到往日游戏的快乐了,也许,只是习惯了吧。

我讨厌学校,这种厌恶感强烈到我已经无法解释为什么讨厌学校了。所以家人质问我为什么不好好上学,我气愤的语塞。我无法解释我为什么讨厌学校,在我看来学校令人讨厌是多么显而易见的事啊!

可是我竟无法说出为什么。所以没有人理解我。

是因为稚嫩,还是我的逆境商数原本就不高,我不清楚。总之,我为别人的不理解感到非常抑郁和苦闷,我只能凭借在游戏中战胜对手,来获取自尊与快乐。

渐渐的,我忘记了想要成为一名程序员的理想,而成为了一名终日混迹于网吧的玩家。我如愿的被学校除名了,如愿的不再受家人的管束。

秦亮与我有类似的经历。于是我们成了很铁的兄弟,吃住不分,相濡以沫。

去年,我们靠出售《天堂2》的游戏币度日。后来,天堂2的外挂横行,满世界跑的都不是活人。我们堆积了上亿的天堂币。这款游戏的没落也使我们失去了经济的来源。

春节的时候,在他父亲的劝说下,秦亮回去了。我则仍然留在这座不属于我的城市。算起来,我离家已经有一年了。

今天是小年,别人都是一家人团聚,而我却孤零零的呆在空荡荡的网吧。

算了,没什么好玩的,去找吧台的张姐聊天去吧。

吧台里没有张姐,只有一个十五六岁的小妹妹,梳了个较长的马尾辫,长得眉清目秀,标致可人。我走进吧台,直接坐在小妹妹旁边的凳子上。

小妹妹说:“喂,你不能进来的。”

我没有理她,反问道:“你新来的啊?”

小妹妹看我不理她,好像有点委屈:“你~不能~进来的~~。”

这时,张姐回来了,看见我说:“帅哥,不玩啦~~”

我说:“嗯,帮我把我的机器先停了吧。”

小妹妹看张姐跟我很熟的样子,也就不说我了,生疏的帮我结掉了我的机器,说道:“13块。”

我说:“先欠着。”

小妹妹听我这么说,先是惊讶,后又无辜的看着张姐。

张姐伸手熟练的从一个不被注意的角落里,拿出了一个本子和一支笔,熟练的记录了我的欠款。说道:“萧扬,你老是欠费,我可是会被老板骂的呀。”

我陪笑道:“放心吧,美女,我过几天就还你。”

张姐这个人很好哄,只要我叫她美女,她就会露出笑容。

“呵呵,来,帅哥,帮我搬饮料。”

虽然是大冬天的,但是,网吧里的饮料照样能卖得掉的。刚才张姐走开想必就是因为有人送饮料来。

送饮料的把饮料丢在门口居然就走了,也不帮美女搬一下,真是的。

新来的小妹妹看有活要干,主动的跑出来,她也伸手要搬。我抢过她手里还没搬起的一箱饮料,说道,“你不用搬,我来。”

饮料很快搬完了,成功的在一位接近中年的少妇和一位未成年的少女面前表现了一把男人的魅力。
from qiskit import QuantumCircuit, execute, Aer, transpile from qiskit.circuit.library import ZZFeatureMap from qiskit_machine_learning.kernels import QuantumKernel from qiskit.aqua.components.optimizers import COBYLA from dwave.system import EmbeddingComposite, DWaveSampler import numpy as np import pandas as pd import tensorflow as tf from sklearn.svm import SVC from scipy.stats import poisson import nltk from nltk.sentiment import SentimentIntensityAnalyzer from sklearn.preprocessing import MinMaxScaler from functools import lru_cache, wraps import logging from concurrent.futures import ThreadPoolExecutor import time import warnings import psutil import pickle import sys import math # 配置日志 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger('QuantumFootballPrediction') warnings.filterwarnings('ignore', category=UserWarning) # 初始化NLP工具 try: nltk.data.find('sentiment/vader_lexicon.zip') except LookupError: nltk.download('vader_lexicon', quiet=True) sia = SentimentIntensityAnalyzer() # 添加性能监控 def performance_monitor(func): call_counts = {} @wraps(func) def wrapper(*args, **kwargs): start_time = time.perf_counter() start_mem = psutil.Process().memory_info().rss / 1024 / 1024 # MB result = func(*args, **kwargs) elapsed = time.perf_counter() - start_time end_mem = psutil.Process().memory_info().rss / 1024 / 1024 # 获取类实例 instance = args[0] if args else None logger_name = getattr(instance, 'logger', logger).name if instance else logger.name # 记录执行时间与内存 logging.getLogger(logger_name).info( f"{func.__name__}: " f"Time={elapsed:.4f}s, " f"Mem={end_mem - start_mem:.2f}MB, " f"Called={call_counts.get(func.__name__, 0) + 1} times" ) # 更新调用计数 call_counts[func.__name__] = call_counts.get(func.__name__, 0) + 1 # 量子电路特定指标 if 'quantum' in func.__name__ and isinstance(result, dict) and 'circuit' in result: circuit = result['circuit'] logging.getLogger(logger_name).debug( f"Quantum circuit depth: {circuit.depth()}, gates: {len(circuit)}" ) return result return wrapper class QuantumMatchPredictor: """量子比赛预测器 - 核心量子预测组件""" def __init__(self, n_qubits=4): self.n_qubits = n_qubits self.optimizer = COBYLA(maxiter=100) self.backend = Aer.get_backend('qasm_simulator') self.feature_map = ZZFeatureMap(n_qubits, reps=2) def build_circuit(self, features: np.ndarray) -> QuantumCircuit: """构建参数化预测线路 - 优化为O(n)复杂度""" qc = QuantumCircuit(self.n_qubits) # 特征编码层 - 使用特征值直接映射到旋转门 for i, val in enumerate(features[:self.n_qubits]): qc.ry(val * np.pi, i) # 特征值映射到[0, π]范围 # 添加特征映射层 qc.compose(self.feature_map, inplace=True) return qc @performance_monitor def predict(self, features: np.ndarray, shots=1024) -> float: """量子预测核心 - 返回主胜概率""" qc = self.build_circuit(features) # 添加测量 qc.measure_all() # 执行并返回概率 try: tqc = transpile(qc, self.backend, optimization_level=1) result = execute(tqc, self.backend, shots=shots).result() counts = result.get_counts(tqc) # 返回全1状态的概率作为主胜概率 return counts.get('1'*self.n_qubits, 0) / shots except Exception as e: logger.error(f"量子预测执行失败: {e}") # 返回随机值作为后备 return np.random.uniform(0.4, 0.6) class QuantumFootballPredictionModel: # 资源管理常量 MAX_QUBITS = 8 MAX_BATCH_SIZE = 8 _quantum_shots = 5000 def __init__(self, biomechanics_model_path=None): # 联赛特异性权重模板 self.league_templates = { '英超': {'体能系数': 1.3, '顺力度': 0.9, '特殊规则': '补时>5分钟时大球概率+15%'}, '意甲': {'防守强度': 1.5, '往绩克制': 1.2, '特殊规则': '平局概率基准值+8%'}, '德甲': {'主场优势': 1.4, '前锋缺阵影响': 2, '特殊规则': '半场领先最终胜率92%'}, '西甲': {'技术流修正': 1.2, '裁判影响': 0.7, '特殊规则': '强队让1.25盘口下盘率61%'} } # 量子计算资源 self.quantum_resources = self.detect_quantum_resources() logger.info(f"检测到量子资源: {self.quantum_resources}") # 量子计算后端 self.quantum_simulator = Aer.get_backend('qasm_simulator') self.dwave_sampler = None if self.quantum_resources.get('dwave', False): try: self.dwave_sampler = EmbeddingComposite(DWaveSampler()) logger.info("成功连接D-Wave量子处理器") except Exception as e: logger.warning(f"无法连接D-Wave量子处理器: {e}") # 预加载模型 self.biomechanics_model = None if biomechanics_model_path: try: self.biomechanics_model = tf.keras.models.load_model(biomechanics_model_path) logger.info("成功加载生物力学模型") except Exception as e: logger.error(f"加载生物力学模型失败: {e}") # 初始化量子匹配预测器 self.quantum_predictor = QuantumMatchPredictor(n_qubits=4) self.lstm_model = self.build_lstm_model() self._energy_cache = {} self.energy_matrix = np.array([[0.5, -0.3], [-0.3, 0.5]]) # 预计算矩阵 @property def quantum_shots(self): if self.quantum_resources.get('dwave', False): return 2000 # D-Wave系统采样更可靠,可减少次数 elif self.quantum_resources.get('ibmq', False): return 8192 # IBMQ硬件需要更多采样 else: return self._quantum_shots # 默认模拟器采样次数 def detect_quantum_resources(self): """检测可用量子计算资源""" resources = { "local_simulator": True, "ibmq": False, "dwave": False } try: from qiskit import IBMQ IBMQ.load_account() providers = IBMQ.providers() resources["ibmq"] = len(providers) > 0 except Exception as e: logger.info(f"IBM Quantum访问失败: {e}") try: from dwave.cloud import Client client = Client.from_config() if client.get_solvers(): resources["dwave"] = True client.close() except Exception as e: logger.info(f"D-Wave访问失败: {e}") return resources def build_lstm_model(self): """优化后的LSTM变盘预测模型""" model = tf.keras.Sequential([ tf.keras.layers.LSTM(128, return_sequences=True, input_shape=(60, 3)), tf.keras.layers.Dropout(0.2), tf.keras.layers.LSTM(64), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(3, activation='softmax') ]) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) return model # ======================== # 输入层:数据标准化 # ======================== @performance_monitor def standardize_input(self, raw_data): """数据标准化处理""" standardized = {} # 基础信息 league_weights = {'英超': 1.2, '西甲': 1.15, '意甲': 1.1, '德甲': 1.15, '法甲': 1.05} weather_weights = {'晴天': 0, '多云': -0.1, '小雨': -0.2, '大雨': -0.3, '': -0.4} standardized['league'] = league_weights.get(raw_data.get('league', '其他'), 1.0) standardized['weather'] = weather_weights.get(raw_data.get('weather', '晴天'), 0) standardized['pitch'] = raw_data.get('pitch_condition', 0.85) # 赛季周数(用于动态权重计算) match_week = raw_data.get('match_week', 1) standardized['match_week'] = min(max(match_week, 1), 38) # 限制在1-38周范围内 # 球队实力 home_rank = raw_data.get('home_rank', 10) away_rank = raw_data.get('away_rank', 10) home_win_rate = raw_data.get('home_win_rate', 0.5) away_win_rate = raw_data.get('away_win_rate', 0.5) home_rank_weight = 1 / max(home_rank, 1) # 防止除零 away_rank_weight = 1 / max(away_rank, 1) # 向量化计算 home_factors = np.array([home_win_rate, home_rank_weight]) away_factors = np.array([away_win_rate, away_rank_weight]) weights = np.array([0.3, 0.7]) standardized['home_strength'] = np.dot(home_factors, weights) standardized['away_strength'] = np.dot(away_factors, weights) # 保存原始胜率用于量子预测 standardized['home_win_rate'] = home_win_rate standardized['away_win_rate'] = away_win_rate # 交锋历史 historical_win_rate = raw_data.get('historical_win_rate', 0.5) historical_win_odds_rate = raw_data.get('historical_win_odds_rate', 0.5) standardized['history_advantage'] = ( 0.6 * historical_win_rate + 0.4 * historical_win_odds_rate ) # 伤停影响 injury_impact = 0 injuries = raw_data.get('injuries', {}) for position, count in injuries.items(): if position == 'forward': injury_impact -= 0.2 * count elif position == 'goalkeeper': injury_impact -= 0.3 * count elif position == 'defender': injury_impact -= 0.15 * count elif position == 'midfielder': injury_impact -= 0.1 * count standardized['injury_impact'] = min(max(injury_impact, -1.0), 0) # 限制范围 # 赛程疲劳 matches_last_7_days = raw_data.get('matches_last_7_days', 0) travel_distance = raw_data.get('travel_distance', 0) standardized['fatigue'] = min( 0.3 * min(matches_last_7_days, 4) + # 限制最多4场 0.7 * min(travel_distance / 1000, 5.0), # 限制最多5000公里 10.0 # 最大值限制 ) # 赔率数据 standardized['william_odds'] = raw_data.get('william_odds', [2.0, 3.0, 3.5]) standardized['asian_odds'] = raw_data.get('asian_odds', [0.85, 0.95, 1.0, 0.92]) # 市场热度 betfair_volume_percent = raw_data.get('betfair_volume_percent', 0.5) theoretical_probability = raw_data.get('theoretical_probability', 0.5) if theoretical_probability > 0: standardized['market_heat'] = min(max( (betfair_volume_percent - theoretical_probability) / theoretical_probability, -1.0), 1.0) # 限制在[-1,1]范围 else: standardized['market_heat'] = 0.0 # 3D姿态数据 if 'player_movement' in raw_data and self.biomechanics_model is not None: try: standardized['injury_risk'] = self.injury_risk_prediction(raw_data['player_movement']) except Exception as e: logger.error(f"伤病风险预测失败: {e}") standardized['injury_risk'] = 0.0 else: standardized['injury_risk'] = 0.0 return standardized # ======================== # 特征引擎层 # ======================== def injury_risk_prediction(self, player_movement): """3D姿态伤病预测""" asymmetry = self.calc_joint_asymmetry(player_movement) load_dist = self.weight_distribution_imbalance(player_movement) # 确保输入为维数组 input_data = np.array([[asymmetry, load_dist]]) return self.biomechanics_model.predict(input_data, verbose=0)[0][0] def calc_joint_asymmetry(self, movement_data): """计算关节不对称性""" # 假设movement_data包含左右数据 left_side = movement_data.get('left_side', np.zeros(10)) right_side = movement_data.get('right_side', np.zeros(10)) return np.mean(np.abs(left_side - right_side)) def weight_distribution_imbalance(self, movement_data): """计算重量分布不平衡""" front_load = movement_data.get('front_load', np.zeros(10)) back_load = movement_data.get('back_load', np.zeros(10)) return np.abs(np.mean(front_load - back_load)) @performance_monitor def quantum_clustering(self, odds_matrix): """量子聚类广实区间判定""" try: # 限制特征维度 feature_dimension = min(odds_matrix.shape[1], 4) feature_map = ZZFeatureMap(feature_dimension=feature_dimension, reps=2) q_kernel = QuantumKernel(feature_map=feature_map, quantum_instance=self.quantum_simulator) return SVC(kernel=q_kernel.evaluate).fit_predict(odds_matrix) except Exception as e: logger.error(f"量子聚类失败: {e}") # 返回随机结果作为后备 return np.random.randint(0, 2, size=odds_matrix.shape[0]) def momentum_calculation(self, recent_form, history_advantage, form_continuity, odds_match, market_sentiment): """顺力度量化计算""" return min(max( 0.4 * recent_form + 0.3 * history_advantage + 0.15 * form_continuity + 0.1 * odds_match + 0.05 * market_sentiment, 0.0), 10.0) # 限制在[0,10]范围 @lru_cache(maxsize=100) def energy_balance_model(self, home_energy, away_energy, match_type): """优化后的动态能量守恒模型""" # 添加对match_type的处理 if match_type not in ['regular', 'derby', 'cup']: match_type = 'regular' # 根据比赛类型设置参数 gamma = 0.8 if match_type == 'derby' else 0.5 if match_type == 'cup' else 0.3 t = self.standardized_data.get('fatigue', 0) team_energy = np.array([home_energy, away_energy]) fatigue_vector = np.array([-gamma * t, gamma * t]) dE = np.dot(self.energy_matrix, team_energy) + fatigue_vector # 限制能量变化范围 dE[0] = min(max(dE[0], -1.0), 1.0) dE[1] = min(max(dE[1], -1.0), 1.0) return dE[0], dE[1] # ======================== # 量子优化层 # ======================== @performance_monitor def quantum_annealing_optimizer(self, prob_dist, market_data): """量子退火赔率平衡器""" # 参数校验 if not all(0 <= p <= 1 for p in prob_dist): logger.warning("概率分布值超出范围,进行归一化") total = sum(prob_dist) if total > 0: prob_dist = [p/total for p in prob_dist] else: prob_dist = [1/3, 1/3, 1/3] if self.dwave_sampler is None: logger.warning("D-Wave采样器不可用,使用经典优化") # 经典模拟退火作为后备 from scipy.optimize import minimize def objective(x): return -np.dot(prob_dist, x) # 约束条件:概率和为1 constraints = ({'type': 'eq', 'fun': lambda x: sum(x) - 1}) bounds = [(0, 1) for _ in range(3)] initial_guess = prob_dist result = minimize(objective, initial_guess, method='SLSQP', bounds=bounds, constraints=constraints) return result.x if result.success else [1/3, 1/3, 1/3] h = {0: -prob_dist[0], 1: -prob_dist[1], 2: -prob_dist[2]} J = {(0,1): market_data.get('arbitrage', 0), (0,2): -market_data.get('deviation', 0), (1,2): market_data.get('trend', 0)} try: response = self.dwave_sampler.sample_ising(h, J, num_reads=1000) sample = response.first.sample # 将样本转换为概率调整 adjusted_probs = [prob_dist[i] * (1 + 0.1 * sample[i]) for i in range(3)] # 归一化 total = sum(adjusted_probs) return [p/total for p in adjusted_probs] if total > 0 else [1/3, 1/3, 1/3] except Exception as e: logger.error(f"量子退火优化失败: {e}") return prob_dist def lstm_odds_change(self, historical_odds): """LSTM赔率变盘预测""" if historical_odds is None or len(historical_odds) < 60: logger.warning("历史赔率数据不足,使用简单平均") return np.argmax(np.mean(historical_odds, axis=0)) if historical_odds else 0 # 数据预处理 scaler = MinMaxScaler() scaled_odds = scaler.fit_transform(historical_odds) X = scaled_odds.reshape(1, scaled_odds.shape[0], scaled_odds.shape[1]) # 预测变盘方向 prediction = self.lstm_model.predict(X, verbose=0) return np.argmax(prediction) @performance_monitor def quantum_score_simulation(self, home_energy, away_energy, hist_avg): """优化后的量子蒙特卡洛比分预测""" # 使用更高效的量子比特分配方案 qc = QuantumCircuit(4) # 减少到4个量子比特以提高效率 # 主客队能量编码 theta_home = home_energy * np.pi theta_away = away_energy * np.pi # 应用旋转门 qc.ry(theta_home, 0) qc.ry(theta_away, 1) # 历史交锋影响 hist_factor = min(1.0, abs(hist_avg[0] - hist_avg[1]) * 0.5) if hist_avg[0] > hist_avg[1]: qc.crx(hist_factor * np.pi, 0, 2) else: qc.crx(hist_factor * np.pi, 1, 3) # 纠缠量子比特以增加相关性 - O(n)复杂度 for i in range(self.n_qubits - 1): qc.cx(i, i+1) # 测量 qc.measure_all() # 量子采样 backend = self.quantum_simulator try: tqc = transpile(qc, backend, optimization_level=3) job = execute(tqc, backend, shots=self.quantum_shots) result = job.result() counts = result.get_counts(tqc) except Exception as e: logger.error(f"量子比分模拟失败: {e}") return f"{round(hist_avg[0])}-{round(hist_avg[1])}" # 改进的比分解码逻辑 goal_counts = {} for state, count in counts.items(): # 前2位表示主队进球数,后2位表示客队进球数 home_goals = int(state[:2], 2) % 5 # 限制最大进球数为4 away_goals = int(state[2:], 2) % 5 # 应用泊松分布修正 home_goals = min(home_goals, 4) away_goals = min(away_goals, 4) score = f"{home_goals}-{away_goals}" goal_counts[score] = goal_counts.get(score, 0) + count # 返回出现频率最高的比分 return max(goal_counts, key=goal_counts.get) # ======================== # 动态修正层 # ======================== def apply_league_template(self, league_type, features): """应用联赛特异性模板""" template = self.league_templates.get(league_type, {}) for feature, factor in template.items(): if feature in features and isinstance(features[feature], (int, float)): features[feature] *= factor return features def enhanced_cold_warning(self, team_energy, market_data): """增强型冷门预警""" risk_score = 0 # 能量赔率偏离 fair_odds = market_data.get('fair_odds', 0.5) if abs(team_energy - fair_odds) > 0.25: risk_score += 35 # 社交媒体情绪 if market_data.get('social_sentiment', 0) > 0.65: risk_score += 20 # 主力轮换检测 training_intensity = market_data.get('training_intensity', 50) coach_tone = market_data.get('coach_tone', 'normal') if training_intensity < 45 and coach_tone == 'conservative': risk_score += 25 return min(risk_score, 100) # 上限100 def inplay_calibration(self, pre_match_pred, match_status): """修复后的滚球实时校准""" win_prob = pre_match_pred['home_win_prob'] # 领先方被压制 if 'xG_diff' in match_status and 'possession' in match_status: if match_status['xG_diff'] < -0.8 and match_status.get('score_lead', 0) == 1: win_prob -= 0.15 * (1 - match_status['possession']/100) # 红牌影响 if match_status.get('red_card', False): card_team = match_status.get('card_team', 0) # 0=主队, 1=客队 minute = match_status.get('minute', 0) time_factor = max(0, (90 - minute) / 90) if card_team == 0: # 主队红牌 win_prob -= 0.4 * time_factor else: # 客队红牌 win_prob += 0.25 * time_factor # 确保概率在[0,1]范围内 win_prob = max(0.0, min(1.0, win_prob)) # 更新预测结果 updated_pred = pre_match_pred.copy() updated_pred['home_win_prob'] = win_prob return updated_pred # ======================== # 决策输出层 # ======================== def win_probability(self, home_rating, away_rating, william_odds, return_rate=0.95, fatigue_factor=0): """修复后的胜平负概率计算""" rating_diff = (home_rating - away_rating) / 5 base_prob = 1 / (1 + np.exp(-rating_diff)) european_prob = return_rate / william_odds[0] if william_odds[0] > 0 else base_prob p_home_win = base_prob * 0.7 + european_prob * 0.3 if fatigue_factor > 2.0: away_rating_adj = away_rating * (1 - min(fatigue_factor/10, 0.3)) rating_diff_adj = (home_rating - away_rating_adj) / 5 base_prob_adj = 1 / (1 + np.exp(-rating_diff_adj)) p_home_win = base_prob_adj * 0.6 + european_prob * 0.4 # 改进的平局概率计算 draw_prob = (1 - abs(home_rating - away_rating)/10) * 0.3 # 考虑赔率中的平局概率 if len(william_odds) > 1 and william_odds[1] > 0: draw_prob = (draw_prob + return_rate/william_odds[1]) / 2 # 确保概率在合理范围内 p_home_win = min(max(p_home_win, 0.1), 0.8) draw_prob = min(max(draw_prob, 0.1), 0.5) p_away_win = 1 - p_home_win - draw_prob # 归一化处理 total = p_home_win + draw_prob + p_away_win p_home_win /= total draw_prob /= total p_away_win /= total return p_home_win, draw_prob, p_away_win # ======================== # 动态权重计算 # ======================== def calculate_dynamic_weights(self, match_week): """ 计算量子模型和传统模型的动态权重 使用公式: α(t) = 1 / (1 + exp(-k(t - t0))) 其中 t0 = 20 (赛季中段), k = 0.1 量子权重: w_q = α(t) × 0.7 + 0.3 传统权重: w_c = 1 - w_q """ t = match_week t0 = 20 # 赛季中段 k = 0.1 # 调整参数 # 计算α(t) alpha = 1 / (1 + math.exp(-k * (t - t0))) # 量子权重在0.3-1.0之间变化 w_quantum = alpha * 0.7 + 0.3 w_classic = 1 - w_quantum logger.info(f"动态权重计算: 赛季周数={t}, α={alpha:.3f}, 量子权重={w_quantum:.3f}, 传统权重={w_classic:.3f}") return w_quantum, w_classic # ======================== # 量子特征预测 # ======================== def quantum_feature_prediction(self, features: dict) -> float: """ 使用量子模型预测比赛特征 特征顺序: home_strength, away_strength, history_advantage, fatigue """ try: # 准备量子预测的特征数组 quantum_features = np.array([ features['home_strength'], features['away_strength'], features['history_advantage'], features['fatigue'] ]) # 进行量子预测 return self.quantum_predictor.predict(quantum_features) except Exception as e: logger.error(f"量子特征预测失败: {e}") # 返回随机值作为后备 return np.random.uniform(0.4, 0.6) # ======================== # 整合预测流程 # ======================== @performance_monitor def predict(self, raw_data): """整合预测流程 - 包含量子与传统模型动态融合""" try: # 1. 数据标准化 self.standardized_data = self.standardize_input(raw_data) league = raw_data.get('league', '英超') # 2. 应用联赛模板 self.apply_league_template(league, self.standardized_data) # 3. 计算球队能量 home_energy = self.standardized_data['home_strength'] * (1 + self.standardized_data['history_advantage']) away_energy = self.standardized_data['away_strength'] * (1 - self.standardized_data['injury_impact']) # 4. 量子比分模拟 hist_avg = raw_data.get('historical_avg_score', [1.5, 1.2]) predicted_score = self.quantum_score_simulation(home_energy, away_energy, hist_avg) # 5. 传统胜平负概率计算 william_odds = self.standardized_data['william_odds'] home_win, draw, away_win = self.win_probability( home_energy, away_energy, william_odds, fatigue_factor=self.standardized_data['fatigue'] ) # 6. 量子特征预测 quantum_prediction = self.quantum_feature_prediction({ 'home_strength': self.standardized_data['home_strength'], 'away_strength': self.standardized_data['away_strength'], 'history_advantage': self.standardized_data['history_advantage'], 'fatigue': self.standardized_data['fatigue'] }) # 7. 动态融合量子与传统预测 match_week = self.standardized_data.get('match_week', 1) w_quantum, w_classic = self.calculate_dynamic_weights(match_week) # 融合主胜概率 fused_home_win = w_quantum * quantum_prediction + w_classic * home_win # 保持相对比例不变 scale = (1 - fused_home_win) / (1 - home_win) if home_win < 1.0 else 1.0 fused_draw = draw * scale fused_away_win = away_win * scale # 归一化处理 total = fused_home_win + fused_draw + fused_away_win fused_home_win /= total fused_draw /= total fused_away_win /= total fused_probs = [fused_home_win, fused_draw, fused_away_win] # 8. 量子退火优化赔率 market_data = { 'arbitrage': raw_data.get('arbitrage_opportunity', 0.05), 'deviation': raw_data.get('odds_deviation', 0.1), 'trend': raw_data.get('market_trend', 0.0) } optimized_probs = self.quantum_annealing_optimizer(fused_probs, market_data) # 9. 冷门预警 cold_risk = self.enhanced_cold_warning(home_energy, { 'fair_odds': 1/(william_odds[0] * 1.05), 'social_sentiment': raw_data.get('social_sentiment', 0.5), 'training_intensity': raw_data.get('training_intensity', 60), 'coach_tone': raw_data.get('coach_tone', 'normal') }) # 10. 构建最终结果 result = { 'predicted_score': predicted_score, 'home_win_prob': optimized_probs[0], 'draw_prob': optimized_probs[1], 'away_win_prob': optimized_probs[2], 'cold_risk': f"{cold_risk}%", 'key_factors': { 'home_energy': home_energy, 'away_energy': away_energy, 'injury_impact': self.standardized_data['injury_impact'], 'fatigue_factor': self.standardized_data['fatigue'], 'weather_impact': self.standardized_data['weather'], 'quantum_prediction': quantum_prediction, 'w_quantum': w_quantum, 'w_classic': w_classic }, 'quantum_optimized': True if self.dwave_sampler else False } # 11. 如果有滚球数据,进行实时校准 if 'inplay_data' in raw_data: result = self.inplay_calibration(result, raw_data['inplay_data']) return result except Exception as e: logger.exception("预测过程中发生错误") return { 'error': str(e), 'fallback_prediction': self.fallback_prediction(raw_data) } def fallback_prediction(self, raw_data): """经典方法作为后备预测""" # 简单基于排名和赔率的预测 home_rank = raw_data.get('home_rank', 10) away_rank = raw_data.get('away_rank', 10) home_adv = (away_rank - home_rank) * 0.05 # 基本胜率计算 home_win = 0.4 + home_adv away_win = 0.3 - home_adv draw = 0.3 # 考虑赔率影响 if 'william_odds' in raw_data: odds = raw_data['william_odds'] implied_home = 1/odds[0] home_win = (home_win + implied_home) / 2 return { 'home_win_prob': home_win, 'draw_prob': draw, 'away_win_prob': away_win, 'predicted_score': "1-1", 'cold_risk': "30%", 'note': "经典预测方法" } # 示例使用 if __name__ == "__main__": # 创建示例数据 sample_data = { 'league': '英超', 'weather': '小雨', 'pitch_condition': 0.8, 'home_rank': 3, 'away_rank': 8, 'home_win_rate': 0.7, 'away_win_rate': 0.4, 'historical_win_rate': 0.6, 'historical_win_odds_rate': 0.55, 'injuries': {'forward': 1, 'defender': 2}, 'matches_last_7_days': 2, 'travel_distance': 800, # 公里 'william_odds': [1.8, 3.4, 4.2], 'asian_odds': [0.85, 0.95, 1.0, 0.92], 'betfair_volume_percent': 0.65, 'theoretical_probability': 0.55, 'historical_avg_score': [1.8, 1.0], 'arbitrage_opportunity': 0.03, 'odds_deviation': 0.15, 'market_trend': -0.1, 'social_sentiment': 0.7, 'training_intensity': 40, 'coach_tone': 'conservative', 'match_type': 'derby', # 比赛类型 'match_week': 5 # 赛季第5周 } # 添加3D姿态数据(简化示例) sample_data['player_movement'] = { 'left_side': np.array([0.8, 0.7, 0.9, 0.85, 0.75]), 'right_side': np.array([0.6, 0.65, 0.7, 0.8, 0.75]), 'front_load': np.array([0.5, 0.55, 0.6]), 'back_load': np.array([0.4, 0.45, 0.5]) } # 创建模型实例并预测 model = QuantumFootballPredictionModel() prediction = model.predict(sample_data) print("\n足球比赛预测结果:") print(f"预测比分: {prediction.get('predicted_score', 'N/A')}") print(f"主胜概率: {prediction.get('home_win_prob', 0):.2%}") print(f"平局概率: {prediction.get('draw_prob', 0):.2%}") print(f"客胜概率: {prediction.get('away_win_prob', 0):.2%}") print(f"量子预测值: {prediction.get('key_factors', {}).get('quantum_prediction', 0):.2%}") print(f"量子权重: {prediction.get('key_factors', {}).get('w_quantum', 0):.2f}") print(f"传统权重: {prediction.get('key_factors', {}).get('w_classic', 0):.2f}") print(f"冷门风险: {prediction.get('cold_risk', 'N/A')}") print(f"是否量子优化: {prediction.get('quantum_optimized', False)}") # 添加滚球数据示例 sample_data['inplay_data'] = { 'minute': 60, 'score': '1-0', 'possession': 45, # 主队控球率% 'xG_diff': -0.7, # 主队预期进球差 'red_card': True, 'card_team': 0 # 0=主队 } # 滚球校准 inplay_prediction = model.predict(sample_data) print("\n滚球校准后主胜概率:", f"{inplay_prediction.get('home_win_prob', 0):.2%}")
06-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值