习武经历(二)

记录了一次武术练习的经历,包括冲拳训练、夺刀术等技能的学习过程。通过与不同水平的对手实战,发现了自身的不足之处,并从沃夫法则中得到启示,意识到日常行为习惯对身体形态的影响。

第二次去,算是拜师了。师父给布置了几个练习让回家每天练习:冲拳训练(包括空拳、墙靶),一摊三伏,胫骨及桡骨硬度训练,其他人还没来,顺便又教了我一招夺刀术。不过夺刀还是很危险的,反应跟不上还是不要去碰的好。

这次来的人比上次少,一个练内家拳的中年汉子,一个是师父的另一弟子,和我年纪差不多,不过身材比我高多了。

我和师父说好以后是隔一周去一次,所以这次练习的内容明显有点多,感觉短时间内消化不了。

接上次对马冲拳的练习,这次着重练习消打合一,就是我方格挡住对方冲拳的同时,另一手冲拳,随即对方格挡开。在单项练习了邋手冲拳,伏手冲拳,拍手冲拳,摊手冲拳后,又教了一个混合的练习,藉由一方喂招,喂招的一方不招不架,只是左一拳右一拳向我方攻来,而我方轮换使用上述单项练习中的任一种进行消打。每挡完一拳后还原为起手式,等待下一拳的到来。

这个练习对我现在来说有点困难了,有种左右互搏的感觉,经常左手一摊的同时,右手应该出拳的却也跟着变掌了。即使是慢慢的练习,我用不了几下就乱套了。

而我给师兄喂招时,他打的就很熟练,我的拳不管打上打下他都能自然的进行消打,而且各种动作任意组合,我看的还觉得很享受,跟看动作片一样。听说他也就比我先入门1个月,不过以前学习了很长时间的各种门派武学,像什么空手道,合气道,剑道什么的,基础比我要好得多。

这次的实战练习,我抽签抽中了那位内家拳师傅,这让我感觉很爽。因为实力高我很多的对手就可以纯以控制为主,这样我就可以放开打,练习进攻技巧了。

果然,他控制的很好,我乱了步伐想摔也没摔下去,每次都被他一把扶住。

他指出我的明显缺点,步伐太浮,速度太慢。后来回家去看了录制的视频,果然,根本就不像是在搏击,像是悠闲的散步,而且步子还有点外八字,很难看,这个我以前走路都没有察觉。

以后这个视频可以用来鞭策自己,每当我上下班走路不注意时,我就想想视频中难看的姿态,我就会提起精神来好好走了。

回家后,我上网查到了沃夫法则,即人的骨骼会随着外部应力而改变自身形态和内部结构。如果我理解的没错的话,不仅通过击打能改变骨骼硬度,可以进一步推断出,腿的形状是由人走路的姿态决定的,并且改变走路姿态能使腿的形状发生变化。

这可以从一个方面解释为何走路难看的人的腿也不好看,而长一双美腿的人走路姿态都很优美。

AI 代码审查Review工具 是一个旨在自动化代码审查流程的工具。它通过集成版本控制系统(如 GitHub 和 GitLab)的 Webhook,利用大型语言模型(LLM)对代码变更进行分析,并将审查意见反馈到相应的 Pull Request 或 Merge Request 中。此外,它还支持将审查结果通知到企业微信等通讯工具。 一个基于 LLM 的自动化代码审查助手。通过 GitHub/GitLab Webhook 监听 PR/MR 变更,调用 AI 分析代码,并将审查意见自动评论到 PR/MR,同时支持多种通知渠道。 主要功能 多平台支持: 集成 GitHub 和 GitLab Webhook,监听 Pull Request / Merge Request 事件。 智能审查模式: 详细审查 (/github_webhook, /gitlab_webhook): AI 对每个变更文件进行分析,旨在找出具体问题。审查意见会以结构化的形式(例如,定位到特定代码行、问题分类、严重程度、分析和建议)逐条评论到 PR/MR。AI 模型会输出 JSON 格式的分析结果,系统再将其转换为多条独立的评论。 通用审查 (/github_webhook_general, /gitlab_webhook_general): AI 对每个变更文件进行整体性分析,并为每个文件生成一个 Markdown 格式的总结性评论。 自动化流程: 自动将 AI 审查意见(详细模式下为多条,通用模式下为每个文件一条)发布到 PR/MR。 在所有文件审查完毕后,自动在 PR/MR 中发布一条总结性评论。 即便 AI 未发现任何值得报告的问题,也会发布相应的友好提示和总结评论。 异步处理审查任务,快速响应 Webhook。 通过 Redis 防止对同一 Commit 的重复审查。 灵活配置: 通过环境变量设置基
【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器的状态空间平均模型的建模策略。该方法通过数学建模手段对直流微电网系统进行精确的状态空间描述,并对其进行线性化处理,以便于系统稳定性分析与控制器设计。文中结合Matlab代码实现,展示了建模与仿真过程,有助于研究人员理解和复现相关技术,推动直流微电网系统的动态性能研究与工程应用。; 适合人群:具备电力电子、电力系统或自动化等相关背景,熟悉Matlab/Simulink仿真工具,从事新能源、微电网或智能电网研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网的动态建模方法;②学习DC-DC变换器在耦合条件下的状态空间平均建模技巧;③实现系统的线性化分析并支持后续控制器设计(如电压稳定控制、功率分配等);④为科研论文撰写、项目仿真验证提供技术支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐步实践建模流程,重点关注状态变量选取、平均化处理和线性化推导过程,同时可扩展应用于更复杂的直流微电网拓扑结构中,提升系统分析与设计能力。
内容概要:本文介绍了基于物PINN驱动的三维声波波动方程求解(Matlab代码实现)理信息神经网络(PINN)求解三维声波波动方程的Matlab代码实现方法,展示了如何利用PINN技术在无需大量标注数据的情况下,结合物理定律约束进行偏微分方程的数值求解。该方法将神经网络与物理方程深度融合,适用于复杂波动问题的建模与仿真,并提供了完整的Matlab实现方案,便于科研人员理解和复现。此外,文档还列举了多个相关科研方向和技术服务内容,涵盖智能优化算法、机器学习、信号处理、电力系统等多个领域,突出其在科研仿真中的广泛应用价值。; 适合人群:具备一定数学建模基础和Matlab编程能力的研究生、科研人员及工程技术人员,尤其适合从事计算物理、声学仿真、偏微分方程数值解等相关领域的研究人员; 使用场景及目标:①学习并掌握PINN在求解三维声波波动方程中的应用原理与实现方式;②拓展至其他物理系统的建模与仿真,如电磁场、热传导、流体力学等问题;③为科研项目提供可复用的代码框架和技术支持参考; 阅读建议:建议读者结合文中提供的网盘资源下载完整代码,按照目录顺序逐步学习,重点关注PINN网络结构设计、损失函数构建及物理边界条件的嵌入方法,同时可借鉴其他案例提升综合仿真能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值