微软过桥问题的图论解法
微软的过桥问题说的是4个人在晚上过一座小桥,过桥时必须要用到手电筒,只有一枚手电筒,每次最多只可以有两人通过, 4个人的过桥速度分别为1分钟、2分钟、5分钟、10分钟,试问最少需要多长时间4人才可以全部通过小桥?
这个问题如果用图论来建模的话,就可以以4个人在桥两端的状态来作为节点来构造一个有向图,如下图所示,以已经过桥了的人的状态作为图的节点,初始时没有人过桥,所以以空表示,第一轮有两个人过桥,有6种可能的组合,(1,2)(1,5)(1,10)(2,5)(2,10)(5,10),从空的状态转换到这些状态的需要的时间分别为2,5,10,5,10,10分钟,时间就作为有向边的权值。当有两个人过桥后,需要一个人拿手电筒回去接其他人,这时有四种可能的情况,分别是1,2,5,10中的一人留在了河的对岸,(1,2)这种状态只能转换到(1)(2)两种状态,对应的边的权值分别为2,1分钟,(1,2)转换到(1)时也就是2返回了,返回需要耗时2分钟,以此类推可以建立以下的图论模型。
要求出最少需要多长时间4人全部通过小桥实际上就是在图中求出(空)节点到(1,2,5,10)节点间的最短路径。
<shapetype id="_x0000_t75" stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t" o:spt="75" coordsize="21600,21600"><span lang="EN-US" style='FONT-SIZE: 10.5pt; FONT-FAMILY: "Times New Roman"; mso-bidi-font-size: 12.0pt; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA'><shapetype id="_x0000_t75" stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t" o:spt="75" coordsize="21600,21600"><stroke joinstyle="miter"></stroke><formulas><f eqn="if lineDrawn pixelLineWidth 0"></f><f eqn="sum @0 1 0"></f><f eqn="sum 0 0 @1"></f><f eqn="prod @2 1 2"></f><f eqn="prod @3 21600 pixelWidth"></f><f eqn="prod @3 21600 pixelHeight"></f><f eqn="sum @0 0 1"></f><f eqn="prod @6 1 2"></f><f eqn="prod @7 21600 pixelWidth"></f><f eqn="sum @8 21600 0"></f><f eqn="prod @7 21600 pixelHeight"></f><f eqn="sum @10 21600 0"></f></formulas><path o:connecttype="rect" gradientshapeok="t" o:extrusionok="f"></path><lock aspectratio="t" v:ext="edit"></lock></shapetype><shape id="_x0000_i1025" style="WIDTH: 366pt; HEIGHT: 393.75pt" type="#_x0000_t75"><imagedata o:title="" src="file:///C:%5CDOCUME~1%5Crose%5CLOCALS~1%5CTemp%5Cmsohtml1%5C01%5Cclip_image001.png"></imagedata></shape></span>
<div><img alt="" src="https://p-blog.youkuaiyun.com/images/p_blog_youkuaiyun.com/drzhouweiming/81d293f5fda54f0e86c66754149fc97e.png"></div>
<stroke joinstyle="miter"></stroke><formulas><f eqn="if lineDrawn pixelLineWidth 0"></f><f eqn="sum @0 1 0"></f><f eqn="sum 0 0 @1"></f><f eqn="prod @2 1 2"></f><f eqn="prod @3 21600 pixelWidth"></f><f eqn="prod @3 21600 pixelHeight"></f><f eqn="sum @0 0 1"></f><f eqn="prod @6 1 2"></f><f eqn="prod @7 21600 pixelWidth"></f><f eqn="sum @8 21600 0"></f><f eqn="prod @7 21600 pixelHeight"></f><f eqn="sum @10 21600 0"></f></formulas><path o:connecttype="rect" gradientshapeok="t" o:extrusionok="f"></path><lock aspectratio="t" v:ext="edit"></lock></shapetype><shape id="_x0000_i1025" style="WIDTH: 366pt; HEIGHT: 393.75pt" type="#_x0000_t75"><imagedata o:title="" src="file:///C:%5CDOCUME~1%5Crose%5CLOCALS~1%5CTemp%5Cmsohtml1%5C01%5Cclip_image001.png"></imagedata></shape>
根据Dijkstra最短路径算法很容易求出其最短路径,如图中的粗线所示。
这样总时间为2+1+10+2+2=17分钟
所以能够活学图论的话,这类智力问题就变成了图论的入门级的问题。
过桥问题图论解
本文探讨了微软过桥问题的图论解法,通过构建有向图模型,并利用Dijkstra算法求解最短路径,得出四人过桥的最优方案。
1802

被折叠的 条评论
为什么被折叠?



