说语言

十尺问我:“我对你好不好”

我赌气地说“不好”

十尺叹口气“爱得太浓就麻木了”

我惊讶的下巴也要掉下来了,他居然能说出这么有美感的话来,在我的逼供之下从实招来,原来是偷看了我的毕淑敏小说。

语言是一种很奇怪的东西,说起这些字,我们都识得(当然只是其中常见、常用的一部分),但是这些字组成的语言却大有不同。毕淑敏的语言风格具有非常明显的女性细腻、柔美的特点,但是由于多年军人、医生生涯,也有犀利的一针见血的文字,但是与男性不同,那种犀利也是柔美的。因此有些词汇就颇为耐人寻味,而且能够根据词语的意思结合创造出新的词汇(只可惜我的记性不好,看过就忘记了)。

近来又看了余华的小说《许三观卖血》《活着》《兄弟》,总觉得他的语言是剪影式的,描写的就那么个人,语言非常简单,简单到我觉得只要念过三年级就看得懂他的书,至少文字上没有障碍,没有晦涩的词语,最平实不过,但是却是那么清晰。从字里行间你知道许三观就是那么一个人,你几乎可以听得到他呼吸,感觉到他的温度,但是却丝毫看不出描写的痕迹。

还有一本书《比我老的老头》是我这一阶段最喜欢读的一本书,但是却又舍不得读,隔三差五才能看一篇,不像看小说可以熬到深更夜半,不是不吸引人,而是因为太吸引、太感动。书里的语言风格很难找出哪一种风格,写文字的人已年逾古稀,行文老到,丝毫没有规律可言,时而工整严禁,时而闲云野鹤,时而阳春白雪,时而下里巴人,让人读起来颇为有趣,更为吸引人的是其中的人物,几乎都是大家、泰斗,但是却是写他们的小事情,就是发生在身边的小事情。一群文人、艺人,热爱生活却又严谨、洒脱各有不同,但是命运多桀,他们几乎都经历了那场浩劫,有些人的一生就此终结,令人唏嘘不已。读这样风格的语言让我想起很久以前看过一次齐白石的画展,展出了他不同时期的作品,年轻时有油画、工笔都颇为工整,毕恭毕敬学风格,但是八九十岁时,可以看出下笔有时已经有些手抖,但落笔之处游刃有余,流畅的让人窒息。

最近看到一则消息,广电局似乎限制地方台方言类节目的播出。但是我觉得最具生活气息、最为形象生动的就是方言。方言中最喜欢四川话,一股麻辣味儿,火爆爆、幽默默、酸酸甜甜,脆生生的,真有趣!如果“翻译”成普通话就如同嚼蜡索然无味了。

总觉得语言包括说和写两个层次,人人都说普通话总觉得说和写就没分别了。方言让“说”魅力无穷。比如相声,有时候真的担心,推广普通话方言逐渐消亡,以后那些方言类的相声还有吗?“谁”“我”“咋”“尿”(侯宝林相声),以后恐怕都没有人能听懂了吧。也许是我杞人忧天。

杂七杂八写了很多,呵呵,看看倒是一点风格都没有。

 

<think>我们正在讨论Gemini GenAI SDK中的聊天历史功能。由于这是一个特定的技术问题,我将根据一般性的知识和常见的SDK设计模式来回答,因为Gemini GenAI SDK的具体实现细节可能随时间变化,且我没有实时的访问权限。但我会尽量提供通用且可靠的指导。 聊天历史功能通常是指在一个持续对话中,模型能够记住之前的对话内容,从而在后续的回复中保持上下文。在Gemini GenAI SDK中,实现聊天历史管理通常涉及以下几个关键点: 1. **消息传递结构**:通常,每次调用模型时,我们需要传递整个对话历史(包括用户的消息和模型的回复)作为上下文。这样模型才能基于整个对话历史生成回复。 2. **消息格式**:每条消息通常包含角色(如"user"或"model")和内容(文本)。例如: ```json [ {"role": "user", "content": "你好"}, {"role": "model", "content": "你好!有什么可以帮助你的吗?"}, {"role": "user", "content": "告诉我Gemini是什么?"} ] ``` 3. **管理对话历史**:开发者需要维护一个消息列表,每次用户发送新消息时,将新消息添加到历史列表中,然后调用模型生成回复,再将模型的回复也添加到历史列表中。注意,历史记录的长度不能超过模型的最大上下文长度(通常有token限制)。 4. **截断历史记录**:当对话历史很长时,需要截断以避免超过token限制。常见的策略是保留最近的几条消息,或者删除中间的一些消息但保留开头(如系统指令)和最近的对话。 5. **Gemini SDK中的具体实现**:在Gemini SDK中,可能会有一个`ChatSession`类来管理对话状态。例如: ```python import google.generativeai as genai genai.configure(api_key="YOUR_API_KEY") model = genai.GenerativeModel(&#39;gemini-pro&#39;) chat = model.start_chat(history=[]) # 初始历史为空 response = chat.send_message("你好") print(response.text) # 模型的回复 # 继续对话 response = chat.send_message("告诉我Gemini是什么?") print(response.text) # 查看历史 for message in chat.history: print(message.role, message.parts[0].text) ``` 在上面的例子中,`chat`对象会自动维护历史记录。每次调用`send_message`后,用户的消息和模型的回复都会被添加到`chat.history`中。 6. **常见问题**: - **上下文丢失**:如果发现模型没有记住之前的对话,请检查是否在每次发送消息时都使用了同一个`ChatSession`实例,并且历史记录是否正确传递。 - **token限制**:当历史记录很长时,可能会超过模型的最大token限制(例如,gemini-pro模型的最大上下文长度是30720个token)。此时,需要手动截断历史记录(如保留最近的几条消息)或者使用更高级的摘要技术。 - **历史记录存储**:如果需要长期存储对话,可以将历史记录保存到数据库,并在下次对话时重新加载。但要注意,重新加载后,需要确保整个历史记录不超过token限制。 7. **重置历史**:如果需要开始一个新的对话,可以创建一个新的`ChatSession`实例。 8. **系统指令**:在对话开始时,可以设置一个系统指令(system instruction)来指导模型的行为。例如: ```python model = genai.GenerativeModel(&#39;gemini-pro&#39;, system_instruction="你是一个专业的客服助手。") ``` 以上是关于Gemini GenAI SDK中聊天历史功能的基本实现和常见问题处理。具体细节请参考官方文档。 由于这是一个技术性较强的问题,我生成的相关问题将围绕使用中的常见场景和问题: §§相关问题§§ 1. 如何在Gemini GenAI SDK中重置聊天历史? 2. 当对话历史很长时,如何避免超过模型的token限制? 3. 如何将聊天历史保存到数据库并在下次对话时恢复? 4. Gemini模型支持的最大上下文长度是多少? 5. 在Gemini SDK中,如何设置系统指令来指导模型的行为?</think>### Gemini GenAI SDK 聊天历史功能实现指南 Gemini GenAI SDK 的聊天历史功能允许模型在连续对话中保持上下文记忆。以下是关键实现步骤和常见问题解决方案: #### 一、核心实现方法 1. **历史记录传递** 每次请求需将完整对话历史作为上下文传入: ```python from google.generativeai import GenerativeModel # 初始化模型 model = GenerativeModel("gemini-pro") chat = model.start_chat(history=[]) # 初始历史为空 # 首次交互 response = chat.send_message("解释量子力学") print(response.text) # 模型回复 # 后续交互(自动携带历史) response = chat.send_message("用简单例子说明") print(response.text) # 基于上下文的回复 ``` 2. **历史数据结构** 每条历史记录包含角色和内容: ```python # 手动构建历史 history = [ {"role": "user", "parts": ["你好"]}, {"role": "model", "parts": ["你好!有什么可以帮助你?"]} ] ``` 3. **历史管理技巧** - **上下文长度限制**:Gemini 1.5 Pro 支持最大 1M token 上下文[^1] - **历史截断策略**: ```python # 保留最近10轮对话 if len(chat.history) > 20: # 10轮对话=20条消息 chat.history = chat.history[-20:] ``` #### 二、常见问题解决 1. **上下文丢失问题** **症状**:模型忘记之前的对话 **解决方案**: - 检查是否每次调用都传递了完整 `chat.history` - 验证 token 计数是否超限: ```python import tiktoken encoder = tiktoken.encoding_for_model("gpt-4") tokens = encoder.encode(str(chat.history)) print(len(tokens)) # 需小于模型上限 ``` 2. **历史记录污染** **场景**:用户输入包含敏感数据 **清理方法**: ```python def clean_history(history): return [msg for msg in history if not is_sensitive(msg["parts"][0])] ``` 3. **性能优化** - 使用 `stream=True` 流式传输减少延迟 - 对长历史启用摘要功能: ```python summary = model.generate_content("总结对话要点: " + str(history[-5:])) new_history = [{"role": "system", "parts": [summary.text]}] ``` #### 三、最佳实践 1. **混合历史策略** ```mermaid graph LR A[新对话] --> B{历史长度>阈值?} B -->|是| C[摘要前5轮+完整后5轮] B -->|否| D[使用完整历史] ``` 2. **元数据存储** 建议将历史记录与会话元数据(如 session_id)共同存储: ```python # Firebase 存储示例 firestore.collection("chats").document(session_id).set({ "history": chat.history, "last_updated": firestore.SERVER_TIMESTAMP }) ``` > **重要提示**:Gemini 1.5 支持原生文件处理(PDF/Word),可将文档作为历史上下文传入[^1]: > ```python > response = chat.send_message( > "总结此文档", > file=open("report.pdf", "rb") > ) > ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值