数论之求欧拉函数

简单的求欧拉函数的值,留下来做个模板。。。。。。。。。。

题目:

Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.

Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.

Output
For each test case there should be single line of output answering the question posed above.

Sample Input
7 12 0

Sample Output
6 4
ac代码:

#include <iostream> #include <cstdio> #include <cmath> using namespace std; long long euler(long long y){ int m=(int)sqrt(y+0.5); int ans=y; for(int i=2;i<=m;++i){ if(y%i==0){ ans=ans/i*(i-1); while(y%i==0) y/=i; } } if(y>1) ans=ans/y*(y-1); return ans; } int main() { long long n; while(cin>>n&&n){ long long x=euler(n); cout<<x<<endl; } }

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值