Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
Note: m and n will be at most 100.
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null)
return 0;
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
if (m == 0 || n == 0 || obstacleGrid[0][0] == 1)
return 0;
int[][] dp = new int[m][n];
dp[0][0] = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (obstacleGrid[i][j] == 1)
dp[i][j] = 0;
else if (i > 0 && j > 0) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
} else if (i > 0) {
dp[i][j] = dp[i - 1][j];
} else if (j > 0) {
dp[i][j] = dp[i][j - 1];
}
}
}
return dp[m - 1][n - 1];
}
}
本文探讨了在网格中寻找不经过障碍物的独特路径的问题,详细介绍了使用动态规划算法解决此类问题的方法,包括如何初始化动态规划矩阵、如何更新矩阵元素以及最终计算网格终点的独特路径数量。
386

被折叠的 条评论
为什么被折叠?



