A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
public class Solution {
// dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
// C(m + n, m)
public int uniquePaths(int m, int n) {
if (m <= 0 || n <= 0)
return 0;
int[][] dp = new int[m][n];
dp[0][0] = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (i > 0 && j > 0)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
else if (i > 0)
dp[i][j] = dp[i - 1][j];
else if (j > 0)
dp[i][j] = dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
本文介绍了一个经典的动态规划问题——计算机器人从网格左上角到右下角的不同路径数量。通过使用动态规划的方法,文章详细解释了如何填充二维数组来得到最终答案。
1013

被折叠的 条评论
为什么被折叠?



