c2k license

license.key.signature = 60q0453x-fe9ey9q7-hsv6qa6h-5zhzx6z3-7kaqgf82-2gsykhh9-7zmffts6-k1q8q4hy-8egu42re-38
license.val.component = 1
license.val.customer = Jiangsu Demo
license.val.expiry = 2009-10-29
license.val.nodeid = f4dbdf21
license.val.release = 7.*
license.val.seqnum = 00463
license.val.type = pilot
license.val.userSessions = 100
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license """Common modules.""" import ast import contextlib import json import math import platform import warnings import zipfile from collections import OrderedDict, namedtuple from copy import copy from pathlib import Path from urllib.parse import urlparse import cv2 import numpy as np import pandas as pd import requests import torch import torch.nn as nn from PIL import Image from torch.cuda import amp # Import 'ultralytics' package or install if missing try: import ultralytics assert hasattr(ultralytics, "__version__") # verify package is not directory except (ImportError, AssertionError): import os os.system("pip install -U ultralytics") import ultralytics from ultralytics.utils.plotting import Annotator, colors, save_one_box from utils import TryExcept from utils.dataloaders import exif_transpose, letterbox from utils.general import ( LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr, increment_path, is_jupyter, make_divisible, non_max_suppression, scale_boxes, xywh2xyxy, xyxy2xywh, yaml_load, ) from utils.torch_utils import copy_attr, smart_inference_mode def autopad(k, p=None, d=1): """ Pads kernel to 'same' output shape, adjusting for optional dilation; returns padding size. `k`: kernel, `p`: padding, `d`: dilation. """ if d > 1: k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad return p class Conv(nn.Module): """Applies a convolution, batch normalization, and activation function to an input tensor in a neural network.""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): """Initializes a standard convolution layer with op
07-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值